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Abstract

Small unmanned air systems (UAS), due to their navigational versatility and abil-
ity to operate autonomously, serve as an intriguing platform on which to carry out
advanced sensing operations in otherwise untraversable or prohibitively dangerous
environments. The need for UAS to be able to autonomously navigate and explore
their environments with limited payload, communication, and computational capac-
ity, however, poses its own challenges–particularly when subjected to the non-ideal
environmental disturbances and feature spaces present in real-world scenarios. This
thesis addresses these issues by presenting two complementary projects enabling UAS-
based autonomous sensing in real-world environments using relatively low-cost and
lightweight hardware. The first project presents a UAS capable of measuring air wakes
while flying tethered behind a moving vessel. The unique challenges of tethered flight
control and relative state estimation in a feature-starved environment are addressed
with a novel planning and control architecture together with an error-state Kalman
filter that achieves centimeter-level relative position accuracy. The second project
presents a multi-agent UAS navigation system for GPS-denied environments that
expands on the state-of-the-art in collaborative simultaneous localization and map-
ping (CSLAM) for the purpose of facilitating fast and accurate radiation mapping
in contaminated and cluttered zones. CSLAM capabilities are made more robust to
communication deficiencies through the novel incorporation of ultra-wideband range
sensors into a distributed range-enhanced pose graph optimization (DRPGO) scheme.
The experimental demonstrations of the two presented systems, considered in tan-
dem to overcome hurdles to sensing from aerodynamic disturbances, feature-starved
environments, and communication bandwidth limitations, strengthen the promise of
small UAS as an effective tool for demanding real-world data collection applications.

Thesis Supervisor: Jonathan P. How
Title: R. C. Maclaurin Professor of Aeronautics and Astronautics, MIT
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Chapter 1

Introduction

1.1 Project Overview

Small unmanned air systems (UAS), in single-agent or multi-agent settings, can be

used in such disparate sensing applications as obtaining precise air wake velocity mea-

surements behind a moving maritime vessel, or mapping a cluttered area bombarded

with dangerous levels of gamma radiation. Such varied mission environments exhibit

their own unique challenges, which generally fall into the categories of dynamic dis-

turbances, sensor ineffectiveness, environmental clutter, time constraints, or compu-

tational and communication constraints. To be useful for real-world data collection,

UAS must be able to autonomously navigate and explore their environments with

limited payload, communication, and computational capacity.

This thesis presents UAS-based solutions to two representative problems in real-

world sensing that account for and directly address these challenges to varying degrees.

The first project is referred to as the Air Wake Measurement System, and is a UAS

designed to autonomously measure air wakes while flying tethered behind a moving

maritime vessel and maintaining an accurate relative state estimate between the UAS

and the vessel. The second project is referred to as Distributed Range-enhanced Pose

Graph Optimization (DRPGO), and its purpose is to expand the ability of a team

of UAS to explore environments for facilitating radiological mapping in post-disaster

zones too dangerous for human traversal. In such scenarios, which can include explo-
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ration inside of possibly damaged buildings, GPS-based localization and unlimited

communication range/bandwidth cannot be assumed, and thus require a distributed

navigation solution that is compatible with an ad hoc networking paradigm.

For each project, the underlying theory and algorithms are presented, followed by

the simulation and hardware tools used for implementation and testing. Simulation

and hardware-based results are presented, validating each project’s approach to its

respective environmental sensing problem.

1.1.1 Air Wake Measurement Motivation and Literature Re-

view

One considerable challenge posed to the takeoff and landing of maritime aircraft on a

moving ship stems from having to stabilize in the midst of a wake of turbulent airflow

traversing the flight deck area. This region of turbulent air wake flow arises in the

lee of the ship’s superstructure as it interacts with a relative headwind. Because of

the inherent risk that the air wake poses to stability during close-proximity flight,

ongoing efforts are being made to use Computational Fluid Dynamics (CFD) models

to accurately characterize the air wake profile for different classes of navy vessels

[65, 11, 61, 56] as well as to quantitatively determine the effect of air wakes on aircraft

dynamics [38, 47, 46]. Despite their prevalence, these models based on CFD analysis

require experimental validation through in-situ air wake velocity measurement.

Small unmanned air vehicles (UAV) for air wake measurement on naval vessels

represent an attractive alternative to deck-mounted anemometers and scale-model

wind tunnel testing due to their ability to operate in the vicinity of the ship while

also capturing air wake effects behind the ship and over the water. These vehicles

require relatively little setup and interference with existing naval vessel configurations

which are already designed to accommodate aircraft.

Flight experiments with remotely piloted air vehicles in the wake of maritime

vessels such as [34] have provided a proof of concept for the usage of such vehicles as

air wake measurement devices.

14



In recent years, there have been several attempts to obtain experimental mea-

surements of the spatially varying air wake velocity profile using small UAV for the

purpose of validating CFD simulations. Phelps et al. [37] employ the use of a small

RC plane with known aerodynamic coefficients and a small sensor suite consisting of

an inertial measurement unit (IMU), GPS, and a GPS mounted on the ship. While

their experiments demonstrate that air wake measurements could be obtained with

an inexpensive platform, the inherent limitations in the sensor suite and ad-hoc na-

ture of the RC flight control limit the resolution and breadth of their results. Mallon

et al. [32] utilize a quadrotor platform and obtain a slightly improved resolution of

measurements through the use of two anemometers onboard the UAV. However, they

are only able to obtain measurements directly behind the ship, unable to traverse

into the free-stream region of air flow due to the difficulty of maintaining stability

with RC control. Gamagedara et al. [16] improve on this design by adding a camera

to the ship deck, performing optical flow to improve the relative state estimation of

the UAV. While the spatial association of air wake measurements is improved, the

approach still suffers from the same stability issues with RC flight and the flight en-

velope was also limited to a very small region of air wake measurement. Kumar et

al. [28] have provided the most spatially extensive set of air wake measurements with

a small RC helicopter that uses an artificial neural network to associate measured

angular rate disturbances on the vehicle with the turbulent component of air wake

velocities. However, their platform requires a significant vehicle-specific calibration

process to train their neural network and is unable to measure the steady-state ve-

locity component of the air wake. Further, the employment of an artificial neural

network, crucial to their air wake measurement process, represents a black box whose

results are difficult to verify in the presence of unfamiliar vehicle flight behavior or

confounding RC pilot inputs.

1.1.2 DRPGO Motivation and Literature Review

Remote radiological source localization and mapping is needed in first-response and

disaster prevention scenarios in areas containing one or more radiation sources. UAS

15



provide ideal platforms for traversing arbitrary terrain when equipped with special-

ized, lightweight radiation sensors. Recent findings show that the resolution and

mapping speed of radiological sensing on a mobile platform with radiation count sen-

sors is greatly improved when fused with pose estimates and 3D map information

obtained through simultaneous localization and mapping (SLAM) [35].

Beyond simulation-based studies in source term estimation for radiological search

[22, 23], there have been a handful of hardware-based studies that achieve autonomous

radiological search and mapping on a single-agent platform such as LAMP [4, 36,

35] or even in a supervised swarm setting [8]. While these methods impressively

demonstrate radioligical source term localization in the real world, the environments

they traverse are either mapped out a priori or characterized by wide open spaces,

mapped by a single agent equipped with a Velodyne LiDAR [59] sensor. While LiDAR

sensing is accurate at long ranges in a wide variety of sensing scenarios, its cost and

weight make the prospect of multiple airborne LiDAR mapping agents a difficult

proposition. Moreover, single-agent LiDAR mapping is limited in its exploratory

capabilities, especially in cluttered environments where long sensing range offers little

advantage.

An alternative to single-agent LiDAR mapping is found in the CSLAM literature,

in which multiple agents seek to collaboratively construct a globally consistent map

by fusing together relative odometry measurements as well as intra- and inter-agent

loop closure detections using pose graph optimization and bundle adjustment. This

is typically done either in a centralized manner , in which a central server collects the

necessary information from the agents to perform this fusion, or using a distributed

approach, where agents share information among themselves, individually and incre-

mentally fusing the information that is currently and locally available [67, 42].

The state-of-the-art in centralized collaborative SLAM from Schmuck et al. [44]

has each mapping agent (or “client”) equipped with a camera and performing its own

visual odometry for both local navigation and keyframe generation. Select keyframes

are shared with a central server that performs pose graph optimization and bundle

adjustment to construct a global map that is shared back with the clients. On separate
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threads, the server also seeks loop closures within and between the individual agent

trajectories in order to increase the global consistency and accuracy of the constructed

map. Centralized methods sidestep the complexities of distributed PGO, outlier

rejection, and loop closure detection, but face challenges of scalability to more than

a handful of agents.

Distributed collaborative SLAM is very much an active area of research, with

state-of-the-art formulations focusing on specific elements of SLAM such as dis-

tributed pose graph optimization [55] and distributed data association [17, 54] with

provable convergence properties. These problems are shown to require significant

inter-agent communication to ensure good performance, prompting other work to fo-

cus on methods for efficient object representations [64, 43] as well as lightweight data

packaging and transfer within a decentralized CSLAM framework [7, 58, 13].

In the last few years, increased experimentation has been performed with ultra-

wideband (UWB)-based relative localization in multi-agent settings. A UWB-based

approach is attractive for scenarios such as formation flying because it requires less

inter-agent communication for relative localization than CSLAM-based methods. For

example, modern UWB ranging hardware has been proven to be effective for aiding

dead-reckoning-based relative localization for swarm behavior, achieving accuracies

from centimeters to the sub-meter level [9, 29, 19, 66].

Recently, UWB has also been incorporated into more sophisticated sensor fusion

schemes with multiple sensing modalities to achieve impressive levels of relative local-

ization accuracy. For example, Xu et al. fuse inter-agent UWB range measurements

with visual inertial odometry (VIO) estimates and inter-agent detections with depth

cameras to achieve centimeter-level relative localization between three agents in an

indoor space [63]. However, though UWB-based range measurements can facilitate

high-accuracy relative position and bearing estimates, unless an additional exterocep-

tive sensing modality is used to “anchor” the constructed global map to the world, the

global map runs the risk of drifting, as observed by Ellingson et al. when they attempt

to improve the absolute localization of several fixed-wing aircraft with relative range

measurements [14].
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There are a small number of works that address the UWB-based global map

anchoring issues by incorporating exteroceptive sensing. Queralta et al. run experi-

ments with a heterogeneous robot team, combining ground-based LiDARs with UWB-

enabled UAS to map out an indoor space [40]. Wen et al. actually incorporate UWB

range measurements into full-fledged CSLAM with GPS and loop closure detections

for multiple cars driving through a city [62]. These methods, while effective in an-

choring the agents’ global pose estimates, rely on sensing modalities that are not

always available in settings like radiological mapping or otherwise cumbersome to

incorporate into a multi-agent setting with only small UAS.

1.2 Thesis Contributions

1.2.1 Air Wake Measurement System

We present a UAS for in-situ air wake measurement that is capable of providing

high-resolution measurements of both turbulent and steady-state flow with a spatial

breadth sufficient to characterize a significant portion of the ship air wake profile. This

task is accomplished through a novel flight control configuration where a small UAS

flies autonomously while attached to the end of a tether, resulting in stable flight

trajectories capable of entering the free stream region of the ship air wake. State

feedback control for the UAS is afforded through the use of a standard nonlinear

state estimator. Precise relative state estimates between the ship deck and UAS are

obtained via a separate relative state estimator that fuses differential GPS [3] and

vision-based pose measurements from active infrared (IR) beacons mounted on the

ship deck. The vision-based pose measurement system, in line with recent efforts

to achieve reliable relative navigation using active features in mobile environments

[26, 25], is one of the primary facilitators of an accurate and robust relative estimation

scheme that functions in a variety of weather conditions and at a large range of

distances from the ship deck.

Our contributions for the measurement system are concisely stated as follows:
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• A novel tethered flight control strategy for autonomous flight capable of full

space coverage of the air wake region behind a moving naval vessel at significant

relative wind speeds.

• An accurate and robust relative state estimation scheme based on the sensor

fusion of vision-based pose measurements with active IR beacons and differential

GPS.

• Demonstration of the robustness of the proposed autonomous control and state

estimation strategies to high wind levels and sensor noise in a high-fidelity

simulation environment.

• Validation of the flight and estimation performance results obtained in simula-

tion with indoor and outdoor flight testing.

1.2.2 DRPGO for Radiological Mapping

This thesis presents the groundwork and preliminary results for an enabling technol-

ogy for the expansion of UAS-based, single-agent radiological search and mapping

platforms to a multi-agent setting. Such an expansion entails a multi-agent 3D map-

ping capability that is robust to a large variety of environments, from wide outdoor

spaces to cluttered indoor spaces, and that also promotes a high degree of exploration

while also maintaining accuracy in time-sensitive scenarios. Moreover, the mapping

strategy can benefit from a distributed architecture that does not assume full con-

nectivity and unlimited communication bandwidth between all mapping agents.

To this end, we present a distributed pose graph optimization scheme that incor-

porates ultra-wideband (UWB)-based inter-agent range measurements. The incorpo-

ration of inter-agent range measurements in DRPGO, when combined with a simple

heterogeneous task allocation strategy, facilitates a desirable trade-off in principle

between swarm mapping exploration (for coverage versus time) and exploitation (for

maintaining global accuracy), which is acknowledged to be a key challenge in the

active SLAM literature [31]. The DRPGO method is meant to expand current state-
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of-the-art capabilities in collaborative SLAM (CSLAM) by facilitating this desirable

coverage behavior while also minimizing inter-agent communication requirements.

Our contributions for the DRPGO formulation are concisely stated as follows:

• Presentation of DRPGO, which incorporates UWB-based range measurements

into a standard distributed pose graph optimization scheme and achieves global

as well as relative consistency and accuracy.

• DRPGO experiments on created simulated and real-world CSLAM datasets.

• Demonstration, through simulation studies, of conditions under which global

accuracy can be expected with DRPGO.
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Chapter 2

Theory and Algorithms for Air Wake

Measurement

2.1 Problem Formulation

The analysis given in this chapter is an expansion on previously published work [57].

Figure 2-1 shows the various reference frames used in the UAS control, estimation,

and measurement subsystems of the air wake measurement system, as well as a simple

illustration of the flight scheme. The UAS is tethered to the ship deck with a line with

controllable length, maintaining the aircraft within a finite range of the moving vessel.

The ship frame, denoted 𝑆, has its origin fixed to the ship deck. The inertial North-

East-Down (NED) frame is denoted as 𝐼. The 𝑆 and 𝐼 frames differ in orientation

principally by a yaw angle, assuming no significant heaving by the ship. The UAS

body frame 𝐵 is defined as having its origin fixed to the aircraft center-of-mass (COM)

with the x-axis 𝑏𝑥 coming out the front of the aircraft, the y-axis 𝑏𝑦 pointing to the

right, and the z-axis 𝑏𝑧 pointing down. Velocities, forces, and torques are generally

expressed in 𝐵, whereas positions are either expressed in 𝑆 or 𝐼. The UAS camera

frame 𝐶 is rigidly mounted to 𝐵 with its z-axis 𝑐𝑧 pointed straight out of the camera

lens, its x-axis 𝑐𝑥 pointed to the right, and its y-axis 𝑐𝑦 pointed down.

In this work, there are two types of states referenced: an absolute state 𝑥𝐼 and

a relative state 𝑥𝑆. While the exact components of the absolute and relative states
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Figure 2-1: Problem formulation for the ship air wake measurement task. Principal
frames and associated hardware components are marked for clarity.

in the context of filtering are explained in Section 2.4, the absolute state refers to

the state of 𝐵 relative to the inertial frame 𝐼 and the relative state also refers to the

state of 𝐵, but this time relative to 𝑆. The absolute state is used primarily for UAS

flight control and the relative state is used primarily for giving spatial context to the

obtained air wake velocity measurements.

2.2 System Overview

Figure 2-2 provides a high-level overview of the system architecture, including the

major hardware and software components both onboard the ship deck and onboard

the UAS. Communication between the ship and the UAS is facilitated with a set of

WiFi antennas, and all algorithms pertaining to autonomous control and state esti-

mation are implemented with the Robot Operating System (ROS) [51] and run on an

ODROID XU-4 computer onboard the UAS for robustness in the event of a connec-

tion dropout. A tether reel controller box and user-operated ground station computer

reside on the ship deck, providing the software and hardware links to command the

aircraft from the ship. Sensors are present both on the ship as well as onboard the

aircraft to aid in both inertial-frame and relative-frame navigation, as explained in
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Figure 2-2: Autonomous flight control system architecture, demarcating systems
present onboard the UAS during flight versus systems which remain on the ship
deck. UAS plant components are colored red, UAS flight control components are
colored green, and components mounted on the ship are colored blue.

detail in Section 2.4. Additional context is provided by Fig. 2-3a, which shows the

UAS measurement platform, and Fig. 2-3b, which depicts both the tether reel control

box and the IR beacon array in their intended placement on the deck.

The following sections detail the relevant design aspects for the control, estimation,

and measurement subsystems, explaining how they have been tailored for the specific

task of reliable high-resolution air wake measurement behind a moving naval vessel.

2.3 Tethered Flight Strategy

One of the distinguishing characteristics of this work is the fact that the UAS com-

pletes the entirety of its mission autonomously. The automated nature of the flight

control and corresponding commanded flight trajectories adds an element of system-

atic regularity and repeatability to the experiment. Additionally, the autonomous

flight control removes the need to account for idiosyncrasies of a remote pilot when

assessing the level of bias in the measurements. Referencing Fig. 2-2, the autonomous

flight software for the UAS consists of the ground station and tether reel controller

on the ship and external force observer, trajectory generator, outer-loop controller,

and inner-loop autopilot onboard the aircraft. The high-level functionality of each

component can be summarized as:
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(a) UAS platform with attached sensors.
Onboard computer and flight control board
are housed inside a protective water-proof
case, and the camera is likewise shielded
from environmental or water damage.
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Lower beacon array

Tether controller

(b) UAS hardware present on ship deck dur-
ing air wake measurement flights.

Figure 2-3: Hardware components for the ship air wake measurement UAS.

• The ground station allows a user on the ship to interface with the UAS remotely

via a WiFi connection and send commands such as takeoff, land, maintain

altitude, collect data, etc.

• The tether reel controller uses a tension sensor to alter the length of the tether

as commanded by the ground station in such a way as to prevent the tether

tension from varying widely and causing too much slack with feedback control.

• The external force observer uses the current absolute state estimate and motor

commands to estimate the aggregate external force acting on the UAS in real

time. From this estimate, the level of tether tautness can be deduced under

nominal conditions, as explained below.

• The trajectory generator listens to commands from the ground station and to

estimates of the current absolute state, relative state, and external force. It

generates reference velocity and altitude commands for the outer-loop controller.

• The outer-loop controller uses proportional-integral-derivative (PID) control

loops to generate reference attitude and yaw rate commands for the inner-loop

autopilot.

24



• The inner-loop autopilot performs attitude control, also with PID, to generate

motor PWM commands.

After takeoff, the UAS flies into the air wake flow region over the water and behind

the ship, orienting itself so that its x-axis 𝑏𝑥, coinciding with its front, is pointed

directly at the origin of 𝒮. Once it has reached this state, system enters the air wake

measurement phase, with the air probe sampling air velocities at 70 Hz.

The interplay between the external force observer, trajectory generator, and outer-

loop controller during the air wake measurement phase requires further discussion

to shed some light on the unique aspects of the control strategy for the proposed

system. During the air wake measurement phase, the trajectory generator proceeds

to command velocities aligned with the y-axis 𝑏𝑦 of the UAS body frame at discrete

altitudes so that the air probe can collect data at points on semi-circular arcs, as

shown in Fig. 2-4.

By commanding various tether lengths and altitudes, a cylindrical grid of air wake

measurements is amassed. Tracking body-frame lateral velocities with the outer-loop

controller instead of position commands in the inertial frame simplifies the controller

objective and avoids integrator wind-up issues that would arise from attempting to

arrive at a point in inertial space rendered unreachable by the tether constraint.

However, it is also necessary for the tether to be taut in order for lateral velocity

commands to result in the desired semi-circular arc trajectories. Tether tautness has

the additional desirable effect of driving the aircraft to be constantly yawed towards

the tether anchor point, effectively passively stabilizing the longitudinal and yaw

dynamics. For these reasons, the control strategy can be thought to work with, and not

against, the tether constraint, taking advantage of the tether’s passive stabilization

effects.

Because tether tautness is so important to the effectiveness of the air wake mea-

surement phase control strategy, the trajectory generator is also constantly monitoring

the output of the external force observer during this phase to determine whether or

not the tether is taut. Tether tautness is determined using the binary criterion of

comparing the component of 𝑓𝐵
ext aligned with 𝑏𝑥 against a certain threshold value,
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Figure 2-4: Illustration of commanded states passed to the outer-loop controller:
UAS pitch angle (𝜃𝐵𝐵/𝐼 ≥ 0), altitude (ℎ̆𝐼

𝐵/𝐼), and lateral velocity (𝑣𝐵𝐵/𝐼,𝑦). With
a taut tether, commands of this form result in semi-circular sweeping trajectories
behind the moving ship.

𝑓𝐵
ext,thresh. The observer is an unscented Kalman filter (UKF) proposed by [53] to

deduce the generalized external forces acting on a small multi-rotor air vehicle given

the motor speed commands 𝜔𝑖 and estimated state. The UKF model for translational

dynamics is given by

𝑣̇𝐵
𝐵/𝐼 =

1

𝑚

⎛⎜⎜⎜⎝𝑓𝐵
ext +

⎡⎢⎢⎢⎣
0

0

𝑓𝐵
thrust

⎤⎥⎥⎥⎦ + 𝑓𝐵
aero

⎞⎟⎟⎟⎠−𝑅(𝑞𝐵
𝐼 )

⎡⎢⎢⎢⎣
0

0

𝑔

⎤⎥⎥⎥⎦ . (2.1)

The corresponding aerodynamic model

𝑓𝐵
aero = 𝜇

𝑁∑︁
𝑖=1

|𝜔𝑖|𝑣𝐵
𝐵/𝐼 , (2.2)

which is a function of individual rotor speeds 𝜔𝑖 over 𝑁 rotors and linear drag constant

𝜇, allows the filter to distinguish between aerodynamic and non-aerodynamic (e.g.,

tether) forces assuming zero wind velocity. However, in an air wake measurement

scenario where relative wind velocities are commonly in the vicinity of 6-7 m/s, the

UKF filter output 𝑓𝐵
ext invariably consists of forces imposed on the UAS by the tether

as well as coupled aerodynamic drag effects.

The consequence of the inability of the UKF to distinguish between tether and

aerodynamic forces is that an effort must be made to actively fly against the tether.
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This is because during flight, the tether and aerodynamic forces from a relative head

wind are never aligned and, in fact, are normally acting in opposing directions. Thus,

actively pulling against the tether will result in a taut tether force far outweighing

the magnitude of the aerodynamic forces, such that it will be easy to distinguish

between a taut and slacked tether by monitoring 𝑓𝐵
ext. To pull against the tether,

the trajectory generator commands a positive pitch angle, saturated at 15 degrees,

throughout the air wake measurement phase. At that level of pitch, the tether force is

easily distinguishable from aerodynamic forces under almost any wind condition. The

only exception arises when there is a non-negligible tailwind that actually pushes the

UAS back towards the ship. The significant tailwind scenario is rare, known mostly

to happen when there is a strong recirculation effect close to the stern of the ship,

and can be compensated for with an intervention from a safety pilot if necessary.

When the trajectory generator detects a significant, sustained tether force indicative

of tether tautness, then it allows the semi-circular sweeping trajectory to continue.

Note that, while both relative and absolute state estimates are available in real-

time, outer-loop control is performed off of the absolute state only for reasons ex-

plained in Section 2.4. The relative state is leveraged in the trajectory generator as

it is useful for operations such as takeoff, landing, and avoiding flying too close to

the ship during the air wake measurement phase. Inner-loop attitude stabilization

and control for the aircraft is handled by the onboard autopilot, which sits on a dedi-

cated flight control board. The ROSflight autopilot [24] was chosen for this platform

because of its lightweight and configurable code architecture, as well as its built-in

compatibility with ROS.

2.4 Absolute and Relative State Estimation with GPS,

Infrared Beacons, and a Camera

Two separate state estimators are run in parallel during flight: an absolute state

estimator and a relative state estimator. The absolute state estimator is used for
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robust UAS flight control and the relative state estimator is primarily for facilitating

accurate spatial characterization of measured air wake velocities. In essence, the

absolute estimator tracks the UAS pose with respect to the inertial frame, whereas

the relative estimator tracks the UAS pose with respect to the moving ship frame.

Both estimators estimate the UAS velocity with respect to the inertial frame, but the

relative estimator also estimates the inertial velocity of the ship and passive rotation

of the ship frame w.r.t. the inertial frame, which allows the estimated UAS inertial

velocity to contribute to the dynamics of the relative UAS pose. Both estimators

observe IMU and barometer biases. The absolute and relative states are:

𝑥𝐼 ,
[︁
𝑝𝐼
𝐵/𝐼 𝑞𝐵

𝐼 𝑣𝐵
𝐵/𝐼 𝑎𝑏 𝜔𝑏 𝑏𝑏 ℎref

]︁⊤
∈ R14 × S3. (2.3)

𝑥𝑆 ,
[︁
𝑝𝑆
𝐵/𝑆 𝑞𝐵

𝐼 𝑣𝐵
𝐵/𝐼 𝑎𝑏 𝜔𝑏 𝑏𝑏 ℎref 𝑞𝑆

𝐼 𝑣𝐼
𝑆/𝐼

]︁⊤
∈ R17 × S3 × S3. (2.4)

For both the absolute and relative case, estimation is performed with the indirect

(or “error-state”) form of the extended Kalman filter (EKF), referred to as the error-

state Kalman filter (ESKF). The ESKF formulation is useful because it decomposes a

state estimate 𝑥̂ into two components: a nominal state term 𝑥 and an error-state term

𝑥̃ such that 𝑥̂ , 𝑥 + 𝑥̃. Whereas the dynamics of the nominal state are fast with

possibly highly nonlinear terms, the dynamics of the error-state are comparatively

slow and are much better approximated as linear as long as the error-state remains

small. Thus, because the ESKF propagates the nominal state directly through inte-

gration and only treats the error-state as a stochastic process subject to innovation

corrections, its numerical properties are generally more desirable than its direct coun-

terpart. Moreover, when 𝑥̂ also contains a component that cannot be expressed as

a vector (such as attitude), the ESKF has the additional advantage of having all of

its vector operations performed in manifold tangent spaces. When the state estimate

contains a nonlinear manifold component, the definition of 𝑥̂ should be augmented

to 𝑥̂ , 𝑥 � 𝑥̃, where � is the operator that increments members of a manifold (to

the left of the operator) with a vector term belonging to a vector space tangent to

the manifold (to the right of the operator) [48].
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The principal difference between the ESKF and the EKF is the need to derive the

error-state dynamics and their corresponding Jacobians on the manifold. A full set

of derivations for the error-state dynamics and measurement model Jacobians for the

absolute and relative estimators are given in Sec. 2.5.

The filter propagation and update steps are defined by slight modifications to the

standard EKF equations, which are

Φ𝑘 =
𝜕

𝜕𝑥
𝑓𝑘(𝑥,𝑢𝑘)|𝑥=𝑥̂+

𝑘
(2.5)

𝑥̂−
𝑘+1 = 𝑓𝑘(𝑥̂+

𝑘 ,𝑢𝑘) (2.6)

𝑄−
𝑘+1 = Φ𝑘𝑄

+
𝑘 Φ

⊤
𝑘 + 𝑊𝑘 (2.7)

𝑟𝑘 = 𝑦𝑘 − ℎ(𝑥̂−
𝑘 ) (2.8)

𝐶𝑘 =
𝜕

𝜕𝑥
ℎ(𝑥)|𝑥=𝑥̂+

𝑘
(2.9)

𝑆𝑘 = 𝑉𝑘 + 𝐶𝑘𝑄
−
𝑘 𝐶

⊤
𝑘 (2.10)

𝑄+
𝑘 = 𝑄−

𝑘 −𝑄−
𝑘 𝐶

⊤
𝑘 𝑆

−1
𝑘 𝐶𝑘𝑄

−
𝑘 (2.11)

𝐿𝑘 = 𝑄−
𝑘 𝐶

⊤
𝑘 𝑆

−1
𝑘 (2.12)

𝑥̂+
𝑘 = 𝑥̂−

𝑘 + 𝐿𝑘𝑟𝑘, (2.13)

with 𝑢𝑘 =
[︁
𝑎𝑚 𝜔𝑚

]︁⊤
as the current IMU accelerometer and gyro measurements.

At each propagation step, the error-state dynamics are linearized about the current

nominal state and discretized with first-order Euler integration to obtain Φ𝑘 with

Eq. 2.5. After each update step, the error-state mean is injected into the nominal

state and subsequently reset to zero with a corresponding filter covariance reset. To

add robustness to outlier measurements, covariance gating [5] is also implemented for

each measurement update.

The absolute estimator fuses only standard sensors onboard the UAS, including

an IMU, GPS, and barometer, with the exception of vision-based attitude correc-

tions when the IR beacon array is in view of the onboard camera. These attitude

corrections allow the IMU accelerometer and gyro biases to be observable, which is

important because low-cost IMU measurements (particularly gyro measurements) can
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drift significantly over the course of several minutes. IMU bias observability requires

inertial attitude updates.

The relative estimator, by contrast, fuses the IMU, barometer, differential GPS,

full vision-based pose measurement, and a separate GPS unit mounted on the ship

deck. The ship-mounted GPS provides information about the ship frame velocity

and also allows for real-time kinematic (RTK) differential GPS calculations between

the ship and the UAS. Because differential GPS gives relative position in the inertial

frame, disparities between its and the vision pose calculator’s relative position mea-

surements informs the estimation of 𝑞𝑆
𝐼 . This property of iteratively estimating the

passive rotation between the inertial and ship frames, however, exhibits a transient

behavior that can adversely affect the accuracy of the estimated UAS velocity when

the IR beacon array comes into the view of the onboard camera for the first time.

Though the velocity estimates quickly re-converge within a matter of seconds, the

effect is significant enough to merit controlling the UAS off of the absolute estimated

state alone while using the relative estimated state in real-time only for high-level

trajectory generation logic based only on relative positions.

To add robustness and accuracy to the real-time relative pose estimation between

the 𝑆 and 𝐵 frames, a monocular pose estimation algorithm with active IR beacons

based on [10] and [15] is employed. Pictured in Fig. 2-3b, two co-linear arrays of 45-

watt IR beacons mounted to a light frame are fixed to the ship deck, and the position

of each beacon 𝑝𝑆
𝑖 expressed in frame 𝑆 is recorded. During flight, a monocular IR

camera onboard the UAS records video of the array, producing images such as the one

depicted in Fig. 2-5a at 10 Hz. The size and brightness of the beacons afford them

visibility during a bright, sunny day at distances well beyond 150 meters. During

the air wake measurement process, the beacons are the brightest objects captured by

the IR camera, making them ideal visual features for relative pose extraction. The

captured camera images are passed through a filter to isolate the beacon features in

the image plane and to reject any outlier features that do not conform to the co-linear

beacon geometry. Figure 2-5b shows a filtered (and cropped) version of the image

taken in Fig. 2-5a at a distance of 150 meters.
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(a) Image captured from UAS camera of IR
beacon array at a distance of 150 meters on
a sunny day.

(b) Filtered camera image with program-
matically isolated beacon feature points in
the image plane.

Figure 2-5: Vision-based relative pose measurement system using active IR beacon
features. Images obtained from [12].

The filtered image features are subsequently associated with the pre-recorded

beacon positions 𝑝𝑆
𝑖 to create eight 3D-to-2D point correspondences, leveraging the

knowledge that the UAS will always be viewing the beacon array from an upright

and forward-facing position. These point correspondences are used together with

the previously known camera intrinsic parameters to deduce the 6-degree-of-freedom

(6-DOF) transform between the ship frame 𝑆 and the camera frame 𝐶 using a

Perspective-n-Point algorithm run in conjunction with RANSAC for outlier detec-

tion. The Perspective-n-Point algorithm uses a nonlinear optimization routine to

minimize the re-projection error of each feature point correspondence by using the

6-DOF relative pose as the design variable. The transform between the UAS body

frame 𝐵 and the camera frame 𝐶, assumed to be known, is then used to obtain the

vision-based relative pose measurement from 𝑆 to 𝐵. The pose extraction algorithm,

tailored to the two-row beacon array, is able to match the input image rate at a speed

of 10 Hz while running on the onboard computer.

However, due to the nature of nonlinear optimization and possible image distortion

that can occur with accelerations during flight, the vision system also has a final

outlier detector to reject solutions which suggest that the solver has not handled a

correspondence ambiguity correctly.
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2.5 Error-State Kalman Filter Equations Derivation

2.5.1 ESKF Background and Quaternion Conventions

The exact process for deriving the linear form of the error-state dynamics and update

equations is tightly coupled with the chosen conventions for representing rotation.

Below is a table showing different convention choices for quaternions, showing two of

the most popular named sets of conventions. The two sets, Hamilton and JPL, are

chosen due to the vast amount of corresponding support literature available. The last

column shows the conventions of the quaternion implementation used for this work,

which must be taken into account in the derivations.

Table 2.1: Comparison of quaternion representation conventions for two of the most
commonly used conventions in robotics and aerospace [49] and the conventions used
in this work.

Convention Hamilton JPL This Work

Components order (𝑞𝑤, 𝑞𝑣) (𝑞𝑣, 𝑞𝑤) (𝑞𝑤, 𝑞𝑣)

Handedness 𝑖𝑗 = 𝑘 (right) 𝑖𝑗 = −𝑘 (left) 𝑖𝑗 = 𝑘 (right)

Function Passive Passive Active

Passive Directionality Local-to-Global Global-to-Local Global-to-Local

As can be seen from Table 2.1, the quaternion convention used in this work is

relatively idiosyncratic compared to existing popular conventions, which makes these

derivations different from many of the standard ESKF derivations in the literature

(for the most part). Each convention choice carries with it implications regarding

how to compute Jacobians on the manifold.

To assist in the computation of the measurement model Jacobians, the following

𝑆𝑂(3) Jacobian blocks are computed for the quaternion conventions in this work:

𝜕

𝜕𝜃
𝑅𝑣 = ⌊𝑅𝑣⌋× (2.14)

𝜕

𝜕𝜃
𝑅⊤𝑣 = −𝑅⊤⌊𝑣⌋×, (2.15)
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𝜕

𝜕𝜃
𝐶𝑅𝑣 = 𝐶⌊𝑅𝑣⌋×, (2.16)

𝜕

𝜕𝜃
𝑅𝐶 = 𝐼, (2.17)

𝜕

𝜕𝜃
𝐶𝑅⊤ = −𝐶𝑅⊤, (2.18)

𝜕

𝜕𝜃
𝐶𝑅⊤𝑣 = −𝐶𝑅⊤⌊𝑣⌋×, (2.19)

assuming that 𝑅 ∈ 𝑆𝑂(3) is the quantity that varies with 𝜃.

2.5.2 Absolute Error-State Dynamics

The nominal dynamics corresponding to the absolute state (Eq. 2.3) are

𝑝̇𝐼
𝐵/𝐼 =

(︀
𝑅𝐵

𝐼

)︀⊤
𝑣𝐵
𝐵/𝐼 , (2.20)

𝑞̇𝐵
𝐼 =

1

2
𝑞𝐵
𝐼 ⊗ 𝜔, (2.21)

𝑣̇𝐵
𝐵/𝐼 = 𝑎 + 𝑅𝐵

𝐼 𝑔𝐼 − 𝜔 × 𝑣𝐵
𝐵/𝐼 , (2.22)

where 𝜔 , 𝜔𝑚 − 𝜔𝑏 and 𝑎 , 𝑎𝑚 − 𝑎𝑏. Note that the equation for 𝑞̇𝐵
𝐼 has its

multiplication order determined by handedness and, in practice, is implemented with

first-order Euler integration as 𝑞̇𝐵
𝐼 = 𝜔.

The error-state is defined (in terms of local perturbations to the nominal state)

as

𝑥̃ =
[︁
𝑝𝐼
𝐵𝑡/𝐵

𝜃𝐵𝑡
𝐵 𝑣𝐵

𝐵𝑡/𝐵
𝑎̃𝑏 𝜔̃𝑏 𝑏̃𝑏 ℎ̃ref

]︁⊤
. (2.23)

The Rodrigues form of the error-state vector 𝜃 is used for generality and for straight-

forward conversions to the quaternion and rotation matrix forms for convenience in

derivations.

The position error state ˙̃𝑝𝐼
𝐵𝑡/𝐵

dynamics are derived with left and right expansions

of 𝑝̇𝐼
𝐵𝑡/𝐼

that are then equated with each other. Linearization approximations are

applied in all right expansions where necessary to derive a linear model.
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The left expansion is given as

𝑝̇𝐼
𝐵𝑡/𝐼 =

(︀
𝑝̇𝐼
𝐵/𝐼 + ˙̃𝑝𝐼

𝐵𝑡/𝐵

)︀
(2.24)

=
(︀
𝑅𝐵

𝐼

)︀⊤
𝑣𝐵
𝐵/𝐼 + ˙̃𝑝𝐼

𝐵𝑡/𝐵, (2.25)

and the right expansion as

𝑝̇𝐼
𝐵𝑡/𝐼 =

(︁
Exp

(︁
𝜃𝐵𝑡
𝐵

)︁
𝑅𝐵

𝐼

)︁⊤ (︀
𝑣𝐵
𝐵/𝐼 + 𝑣𝐵

𝐵𝑡/𝐵

)︀
(2.26)

≈
(︀
𝑅𝐵

𝐼

)︀⊤
(𝐼 + ⌊𝜃𝐵𝑡

𝐵 ⌋×)
(︀
𝑣𝐵
𝐵/𝐼 + 𝑣𝐵

𝐵𝑡/𝐵

)︀
(2.27)

≈
(︀
𝑅𝐵

𝐼

)︀⊤
𝑣𝐵
𝐵/𝐼 +

(︀
𝑅𝐵

𝐼

)︀⊤
𝑣𝐵
𝐵𝑡/𝐵 +

(︀
𝑅𝐵

𝐼

)︀⊤ ⌊𝜃𝐵𝑡
𝐵 ⌋× 𝑣𝐵

𝐵/𝐼 . (2.28)

Equating the two expansions yields

˙̃𝑝𝐼
𝐵𝑡/𝐵 =

(︀
𝑅𝐵

𝐼

)︀⊤
𝑣𝐵
𝐵𝑡/𝐵 −

(︀
𝑅𝐵

𝐼

)︀⊤ ⌊𝑣𝐵
𝐵/𝐼⌋×𝜃𝐵𝑡

𝐵 . (2.29)

In the derivation of the orientation error-state ˙̃𝜃𝐵𝑡
𝐵 dynamics, the chosen quater-

nion conventions for handedness, function, and passive directionality (see Table 2.1)

all matter. As it turns out, the conventions used in this work for function and passive

directionality work together for this derivation in the exact same way as with the

Hamilton convention. The derivation is then identical to what can be found in other

works using the popular Hamilton convention, and thus is omitted from this section.

The interested reader may find a derivation on pages 58-59 of [48]. The final result

is given by
˙̃𝜃𝐵𝑡
𝐵 = 𝜔̃ − ⌊𝜔⌋×𝜃𝐵𝑡

𝐵 . (2.30)

The velocity error-state ˙̃𝑣𝐵
𝐵𝑡/𝐵

dynamics are derived from the left expansion

𝑣̇𝐵
𝐵𝑡/𝐼 = 𝑣̇𝐵

𝐵/𝐼 + ˙̃𝑣𝐵
𝐵𝑡/𝐵 (2.31)

= 𝑎 + 𝑅𝐵
𝐼 𝑔

𝐼 − ⌊𝜔⌋×𝑣𝐵
𝐵/𝐼 + ˙̃𝑣𝐵

𝐵𝑡/𝐵, (2.32)

and right expansion (applying linearizing assumptions and omitting higher-order
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terms)

𝑣̇𝐵
𝐵𝑡/𝐼 = 𝑎 + 𝑎̃ + Exp

(︁
𝜃𝐵𝑡
𝐵

)︁
𝑅𝐵

𝐼 𝑔
𝐼 − ⌊𝜔 + 𝜔̃⌋×

(︀
𝑣𝐵
𝐵/𝐼 + 𝑣𝐵

𝐵𝑡/𝐵

)︀
(2.33)

≈ 𝑎 + 𝑎̃ +
(︁
𝐼 − ⌊𝜃𝐵𝑡

𝐵 ⌋×
)︁
𝑅𝐵

𝐼 𝑔
𝐼 − ⌊𝜔⌋×𝑣𝐵

𝐵/𝐼 − ⌊𝜔⌋×𝑣𝐵
𝐵𝑡/𝐵 − ⌊𝜔̃⌋×𝑣

𝐵
𝐵/𝐼 (2.34)

≈ 𝑎 + 𝑎̃ + 𝑅𝐵
𝐼 𝑔

𝐼 − ⌊𝜃𝐵𝑡
𝐵 ⌋×𝑅

𝐵
𝐼 𝑔

𝐼 − ⌊𝜔⌋×𝑣𝐵
𝐵/𝐼 − ⌊𝜔⌋×𝑣𝐵

𝐵𝑡/𝐵

− ⌊𝜔̃⌋×𝑣𝐵
𝐵/𝐼 . (2.35)

Equating the two sides gives

˙̃𝑣𝐵
𝐵𝑡/𝐵 = 𝑎̃ + ⌊𝑅𝐵

𝐼 𝑔𝐼⌋×𝜃𝐵𝑡
𝐵 − ⌊𝜔⌋× 𝑣𝐵

𝐵𝑡/𝐵 + ⌊𝑣𝐵
𝐵/𝐼⌋×𝜔̃. (2.36)

The linearized error-state equations are combined in state-space form to define

the full Jacobian matrices for the error-state dynamics, given by

˙̃𝑥𝐼 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

˙̃𝑝𝐼
𝐵𝑡/𝐵

˙̃𝜃𝐵𝑡
𝐵

˙̃𝑣𝐵
𝐵𝑡/𝐵

˙̃𝑎𝑏

˙̃𝜔𝑏

˙̃𝑏𝑏
˙̃ℎref

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 𝐴abs𝑥̃

𝐼 + 𝐵abs

⎡⎣𝑎̃
𝜔̃

⎤⎦ , (2.37)

𝐴abs =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −
(︀
𝑅𝐵

𝐼

)︀⊤ ⌊𝑣𝐵
𝐵/𝐼⌋×

(︀
𝑅𝐵

𝐼

)︀⊤
0 0 0 0

0 −⌊𝜔⌋× 0 0 −𝐼 0 0

0 ⌊𝑅𝐵
𝐼 𝑔

𝐼⌋× −⌊𝜔⌋× −𝐼 −⌊𝑣𝐵
𝐵/𝐼⌋× 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.38)
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𝐵abs =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 𝐼

𝐼 ⌊𝑣𝐵
𝐵/𝐼⌋×

0 0

0 0

0 0

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.39)

2.5.3 Absolute Measurement Equations

The nonlinear measurement model 𝑧 = ℎ(𝑥𝐼) and corresponding error-state-linearized

model 𝑧 ≈ 𝜕ℎ
𝜕𝑥̃𝐼 𝑥̃

𝐼 = 𝐻𝑥̃𝐼 is now presented for each sensor incorporated into the abso-

lute estimator, as explained in Section 2.4. The linearizations rely on the quaternion

convention-specific matrix derivative rules (Eq. 2.14-2.19).

The barometer sensor output varies with ground pressure 𝑃ground, atmospheric

density 𝜌, and gravitational acceleration 𝑔 as

𝑧 = 𝑃ground + 𝜌𝑔 𝑝𝐼
𝐵/𝐼,𝑧 + 𝑏𝑏, (2.40)

and the linearized model is

𝐻 =
[︁[︁

0 0 𝜌𝑔
]︁

0 0 0 0 1 0
]︁
. (2.41)

The high-rate velocity measurements from the UAS-mounted GPS module are

described by the measurement model

𝑧 =
(︀
𝑅𝐵

𝐼

)︀⊤
𝑣𝐵
𝐵/𝐼 , (2.42)

𝐻 =
[︁
0 −

(︀
𝑅𝐵

𝐼

)︀⊤ ⌊𝑣𝐵
𝐵/𝐼⌋×

(︀
𝑅𝐵

𝐼

)︀⊤
0 0 0 0

]︁
. (2.43)

The GPS module also reports position and velocity in a format that directly

relates to the Earth-centered, Earth-fixed (ECEF) frame. Thus, the incorporation of
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the GPS fix measurements requires the rotation between the inertial NED and ECEF

frames, 𝑅𝐼
𝐸, which is a function of the reference latitude, longitude, and altitude

for the chosen NED coordinate frame origin. With this rotation in-hand, the GPS

measurement models are

𝑧 =

⎡⎣(︀𝑅𝐼
𝐸

)︀⊤
𝑝𝐼
𝐵/𝐼 +𝐸 𝑝𝐼/𝐸(︀

𝑅𝐼
𝐸

)︀⊤ (︀
𝑅𝐵

𝐼

)︀⊤
𝑣𝐵
𝐵/𝐼

⎤⎦ , (2.44)

𝐻 =

⎡⎣(︀𝑅𝐼
𝐸

)︀⊤
0 0 0 0 0 0

0 −
(︀
𝑅𝐼

𝐸

)︀⊤ (︀
𝑅𝐵

𝐼

)︀⊤ ⌊𝑣𝐵
𝐵/𝐼⌋×

(︀
𝑅𝐼

𝐸

)︀⊤ (︀
𝑅𝐵

𝐼

)︀⊤
0 0 0 0

⎤⎦ .(2.45)

Attitude corrections received from the relative estimator are described by the

simple measurement models

𝑧 = 𝑞𝐵
𝐼 , (2.46)

𝐻 =
[︁
0 𝐼 0 0 0 0 0

]︁
. (2.47)

Before takeoff, it is useful to incorporate a pseudo-measurement that prevents the

estimated altitude and attitude of the UAS from changing (lateral position is allowed

to vary, as the UAS would be on a moving ship). The corresponding measurement

models are

𝑧 =

⎡⎣ 𝑞𝐵
𝐼

𝑝𝐼
𝐵/𝐼,𝑧

⎤⎦ , (2.48)

𝐻 =

⎡⎣ 0 𝐼 0 0 0 0 0[︁
0 0 1

]︁
0 0 0 0 0 0

⎤⎦ . (2.49)

Finally, motion capture-based true pose measurements can be optionally incorpo-

rated into the estimator with the models

𝑧 =

⎡⎣𝑝𝐼
𝐵/𝐼

𝑞𝐵
𝐼

⎤⎦ , (2.50)
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𝐻 =

⎡⎣𝐼 0 0 0 0 0 0

0 𝐼 0 0 0 0 0

⎤⎦ . (2.51)

2.5.4 Relative Error-State Dynamics

The nominal dynamics corresponding to the relative state (Eq. 2.4) are

𝑝̇𝑆
𝐵/𝑆 = 𝑅𝑆

𝐼 (𝑅𝐵
𝐼 )⊤ 𝑣𝐵

𝐵/𝐼 −𝑅𝑆
𝐼 𝑣𝐼

𝑆/𝐼 , (2.52)

𝑞̇𝐵
𝐼 =

1

2
𝑞𝐵
𝐼 ⊗ 𝜔, (2.53)

𝑣̇𝐵
𝐵/𝐼 = 𝑎 + 𝑅𝐵

𝐼 𝑔𝐼 − 𝜔 × 𝑣𝐵
𝐵/𝐼 . (2.54)

For the air wake measurement system, the ship’s orientation 𝑞𝑆
𝐼 and velocity 𝑣𝐼

𝑆/𝐼

are assumed to be quasi-static quantities. The local-perturbation error-state is defined

as

𝑥̃𝑆 =
[︁
𝑝𝑆
𝐵𝑡/𝐵

𝜃𝐵𝑡
𝐵 𝑣𝐵

𝐵𝑡/𝐵
𝑎̃𝑏 𝜔̃𝑏 𝑏̃𝑏 ℎ̃ref 𝜃𝑆𝑡

𝑆 𝑣𝐼
𝑆𝑡/𝑆

]︁⊤
. (2.55)

All error-state derivations from Section 2.5.2 can be re-used here, with the excep-

tion of the updated relative position error-state ˙̃𝑝𝑆
𝐵𝑡/𝐵

dynamics. The left and right

expansions of the relative position error-state dynamics are given as

𝑝̇𝑆
𝐵𝑡/𝑆 = 𝑝̇𝑆

𝐵/𝑆 + ˙̃𝑝𝑆
𝐵𝑡/𝐵 (2.56)

= 𝑅𝑆
𝐼

(︁(︀
𝑅𝐵

𝐼

)︀⊤
𝑣𝐵
𝐵/𝐼 − 𝑣𝐼

𝑆/𝐼

)︁
+ ˙̃𝑝𝑆

𝐵𝑡/𝐵, (2.57)

and

𝑝̇𝑆
𝐵𝑡/𝑆 =

(︁
Exp

(︁
𝜃𝑆𝑡
𝑆

)︁
𝑅𝑆

𝐼

)︁(︁
Exp

(︁
𝜃𝐵𝑡
𝐵

)︁
𝑅𝐵

𝐼

)︁⊤ (︀
𝑣𝐵
𝐵/𝐼 + 𝑣𝐵

𝐵/𝐼

)︀
− Exp

(︁
𝜃𝑆𝑡
𝑆

)︁
𝑅𝑆

𝐼

(︀
𝑣𝐼
𝑆/𝐼 + 𝑣𝐼

𝑆/𝐼

)︀
(2.58)

≈
(︁
𝐼 − ⌊𝜃𝑆𝑡

𝑆 ⌋×
)︁
𝑅𝑆

𝐼

(︀
𝑅𝐵

𝐼

)︀⊤ (︁
𝐼 + ⌊𝜃𝐵𝑡

𝐵 ⌋×
)︁ (︀

𝑣𝐵
𝐵/𝐼 + 𝑣𝐵

𝐵/𝐼

)︀
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−
(︁
𝐼 − ⌊𝜃𝑆𝑡

𝑆 ⌋×
)︁
𝑅𝑆

𝐼

(︀
𝑣𝐼
𝑆/𝐼 + 𝑣𝐼

𝑆/𝐼

)︀
(2.59)

≈
(︁
𝑅𝑆

𝐵 − ⌊𝜃𝑆𝑡
𝑆 ⌋×𝑅

𝑆
𝐵

)︁(︁
𝐼 + ⌊𝜃𝐵𝑡

𝐵 ⌋×
)︁ (︀

𝑣𝐵
𝐵/𝐼 + 𝑣𝐵

𝐵/𝐼

)︀
−

(︁
𝐼 − ⌊𝜃𝑆𝑡

𝑆 ⌋×
)︁
𝑅𝑆

𝐼

(︀
𝑣𝐼
𝑆/𝐼 + 𝑣𝐼

𝑆/𝐼

)︀
(2.60)

≈ 𝑅𝑆
𝐵𝑣

𝐵
𝐵/𝐼 + 𝑅𝑆

𝐵𝑣
𝐵
𝐵/𝐼 + 𝑅𝑆

𝐵⌊𝜃𝐵𝑡
𝐵 ⌋×𝑣

𝐵
𝐵/𝐼 − ⌊𝜃𝑆𝑡

𝑆 ⌋×𝑅
𝑆
𝐵𝑣

𝐵
𝐵/𝐼 −𝑅𝑆

𝐼 𝑣
𝐼
𝑆/𝐼

−𝑅𝑆
𝐼 𝑣

𝐼
𝑆/𝐼 + ⌊𝜃𝑆𝑡

𝑆 ⌋×𝑅
𝑆
𝐼 𝑣

𝐼
𝑆/𝐼 . (2.61)

Equating the left and right expansions yields

˙̃𝑝𝑆
𝐵𝑡/𝐵 = −𝑅𝑆

𝐵⌊𝑣𝐵
𝐵/𝐼⌋× 𝜃𝐵𝑡

𝐵 +𝑅𝑆
𝐵 𝑣𝐵

𝐵/𝐼 + ⌊𝑅𝑆
𝐵 𝑣𝐵

𝐵/𝐼 −𝑅𝑆
𝐼 𝑣𝐼

𝑆/𝐼⌋×𝜃𝑆𝑡
𝑆 −𝑅𝑆

𝐼 𝑣𝐼
𝑆/𝐼 . (2.62)

The final linearized error-state equations, then, are

˙̃𝑥𝑆 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

˙̃𝑝𝑆
𝐵𝑡/𝐵

˙̃𝜃𝐵𝑡
𝐵

˙̃𝑣𝐵
𝐵𝑡/𝐵

˙̃𝑎𝑏

˙̃𝜔𝑏

˙̃𝑏𝑏
˙̃ℎref

˙̃𝜃𝑆𝑡
𝑆

˙̃𝑣𝐼
𝑆𝑡/𝑆

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 𝐴rel𝑥̃
𝑆 + 𝐵rel

⎡⎣𝑎̃
𝜔̃

⎤⎦ ,
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𝐴rel =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −𝑅𝑆
𝐵⌊𝑣𝐵

𝐵/𝐼⌋× 𝑅𝑆
𝐵 0 0 0 0 ⌊𝑅𝑆

𝐵 𝑣𝐵
𝐵/𝐼 −𝑅𝑆

𝐼 𝑣𝐼
𝑆/𝐼⌋× −𝑅𝑆

𝐼

0 −⌊𝜔⌋× 0 0 −𝐼 0 0 0 0

0 [𝑅𝐵
𝐼 𝑔𝐼 ]× −⌊𝜔⌋× −𝐼 −⌊𝑣𝐵

𝐵/𝐼⌋× 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

𝐵rel =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 𝐼

𝐼 ⌊𝑣𝐵
𝐵/𝐼⌋×

0 0

0 0

0 0

0 0

0 0

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

2.5.5 Relative Measurement Equations

Similar to the model presentation in Section 2.5.3, this section presents the measure-

ment models for the sensors incorporated into the relative estimator, as described in

Section 2.4.

The IR vision system provides a direct relative pose measurement between the

UAS and the ship, modeled as

𝑧 =

⎡⎣ 𝑝𝑆
𝐵/𝑆

𝑅𝐵
𝐼

(︀
𝑅𝑆

𝐼

)︀⊤ ∼ (︀
𝑞𝑆
𝐼

)︀* ⊗ 𝑞𝐵
𝐼

⎤⎦ , (2.63)

40



𝐻 =

⎡⎣𝐼 0 0 0 0 0 0 0 0

0 𝐼 0 0 0 0 0 −𝑅𝐵
𝐼

(︀
𝑅𝑆

𝐼

)︀⊤
0

⎤⎦ . (2.64)

Note the reversed order of the quaternion composition when compared with the

rotation matrix composition. Although the right-handed form of ⊗ normally cor-

responds to the same kind of composition as with rotation matrices, the fact that

quaternions in this convention are actually active necessitates the reversed order.

The high-rate NED-frame velocity measurements from the UAS-mounted GPS

are modeled as

𝑧 =
(︀
𝑅𝐵

𝐼

)︀⊤
𝑣𝐵
𝐵/𝐼 , (2.65)

𝐻 =
[︁
0 −

(︀
𝑅𝐵

𝐼

)︀⊤ ⌊𝑣𝐵
𝐵/𝐼⌋×

(︀
𝑅𝐵

𝐼

)︀⊤
0 0 0 0 0 0

]︁
. (2.66)

The RTK GPS relative position measurements, given in the NED frame, are de-

scribed by the measurement models

𝑧 =
(︀
𝑅𝑆

𝐼

)︀⊤
𝑝𝑆
𝐵/𝑆, (2.67)

𝐻 =
[︁(︀
𝑅𝑆

𝐼

)︀⊤
0 0 0 0 0 0 −

(︀
𝑅𝑆

𝐼

)︀⊤ ⌊𝑝𝑆
𝐵/𝑆⌋× 0

]︁
. (2.68)

In the relative scheme, the ship has its own GPS module affixed to it, reporting

NED-frame velocities described with

𝑧 = 𝑣𝐼
𝑆/𝐼 , (2.69)

𝐻 =
[︁
0 0 0 0 0 0 0 0 𝐼

]︁
. (2.70)

Optionally, a magnetometer can also be mounted on the ship deck, and its mag-

netic field measurements are incorporated into the relative estimator with

𝑧 = 𝑅𝑀
𝑆 𝑅𝑆

𝐼 𝑚̂𝐼 , (2.71)

𝐻 =
[︁
0 0 0 0 0 0 0 𝑅𝑀

𝑆 ⌊𝑅𝑆
𝐼 𝑚̂𝐼⌋× 0

]︁
. (2.72)
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Motion capture measurements, which must provide information about both the

UAS and ship frames, can be used in lieu of the aforementioned sensors with the

measurement models

𝑧 =
[︁(︀
𝑅𝑆

𝐼

)︀⊤
𝑝𝑆
𝐵/𝑆 𝑞𝐵

𝐼 𝑞𝑆
𝐼 𝑣𝐼

𝑆/𝐼

]︁⊤
, (2.73)

𝐻 =

⎡⎢⎢⎢⎢⎢⎢⎣

(︀
𝑅𝑆

𝐼

)︀⊤
0 0 0 0 0 0 −

(︀
𝑅𝑆

𝐼

)︀⊤ ⌊𝑝𝑆
𝐵/𝑆⌋× 0

0 𝐼 0 0 0 0 0 0 0

0 0 0 0 0 0 0 𝐼 0

0 0 0 0 0 0 0 0 𝐼

⎤⎥⎥⎥⎥⎥⎥⎦ . (2.74)

2.6 Summary

This chapter presents the tailored control strategy for tethered flight employed by the

UAS for the air wake measurement system. A description of the sensing modalities

and estimation schemes for absolute and relative state estimation is given, together

with derivations for the underlying error-state dynamic and measurement models.

Chapter 3 presents the simulation environment and hardware used to test and evalu-

ate the control and estimation algorithms subject to representative disturbances and

environmental conditions.
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Chapter 3

Simulation and Hardware for Air

Wake Measurement

3.1 Simulated Maritime Environment

The use of an autonomous control strategy coupled with real-time sensor fusion in-

the-loop necessitates a high-fidelity test bed for development and validation of the

flight-critical algorithms. To partially fulfill this need, a simulator built in ROS has

been developed to model the 6-degree-of-freedom (DOF) UAS dynamics, ship motion,

tether contact dynamics, sensor noise models, and aerodynamic drag effects present

in a mobile, maritime environment with significant wind. Figure 3-1 shows sample

views of the simulation environment, depicting the naval vessel, UAS, and tether.

The simulator runs all onboard algorithms described in Figure 2-2 as hardware-in-

the-loop (HIL) with the UAS ODROID-XU4 computer and runs through all phases

of the air wake measurement process, including takeoff, measurement acquisition,

return-to-home, and land. An identical ground station interface to the one used in

field testing is also provided for the user to practice sending commands to the UAS

and tether reel controller.
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Figure 3-1: Simulation environment for the air wake measurement system, used for
testing all phases of the measurement flight in the presence of configurable wind
disturbances and at varying levels of sensor noise and bias. The simulated tether line,
colored red, keeps the airborne UAS anchored to a naval vessel moving forward at a
steady velocity.

3.1.1 UAS Software-in-the-Loop Autopilot and Dynamics

To establish the simulation environment as a useful measure of UAS suitability for

ship air wake measurement, the parameters defining UAS dynamic characteristics

and aerodynamic susceptibility are validated against measured behavior in hardware.

The UAS motor parameters are measured directly using the Dynamometer Series

1580 thrust stand, mass is measured on a scale, and aerodynamic parameters for

the rotor blade flapping effect are estimated using least-squares optimization with

hardware data from several motion capture flights. Sensor noise and bias parameters

are validated against recorded sensor data on the hardware platform, determining

covariance levels through obtaining Gaussian fits of the data. As a final validation

test, the simulated UAS has been found to exhibit the same qualitative flight be-

havior as the hardware platform as measured with a motion capture system when

provided identical inputs to the inner-loop autopilot. With validated dynamic be-

havior, the simulation environment provides a suitable test bed for evaluating control

and estimation algorithm performance before executing a mission on an actual naval

vessel.
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3.1.2 Aerodynamic Turbulence Effects

Environmental wind conditions are simulated using a Dryden gust stochastic process

model [30] in its pseudo-spectral form given by

𝐺(𝑠) = 𝜎

√︂
2𝐿

𝜋𝑉

1 + 2
√
3𝐿

𝑉
𝑠(︀

1 + 2𝐿
𝑉
𝑠
)︀2𝑈(𝑠), (3.1)

where 𝑉 is the effective velocity of the UAS through the air, 𝐿 is the turbulence

length scale, and 𝜎 is the turbulence intensity.

At non-negligible relative wind speeds, aerodynamic effects begin to impose sig-

nificant moment and force disturbances on small aircraft. These effects are modeled

in the simulator through the environmental implementation of the rotor blade flap-

ping effect [20], which occurs due to both linear drag on the aircraft frame as well

as differential moments that arise across the individual rotors when the half of the

rotor blade moving into the wind generates more lift than the half moving with the

wind. For example, in the scenario where the UAS is flying directly behind the ship

and facing the air wake stream, a significant differential moment is generated about

the UAS pitch axis, described by

𝑀𝐵
𝑦 =

𝑁∑︁
𝑖

(𝑓𝑖,thrustℎ𝑖 sin(𝑘𝑓𝑣wind,𝑏𝑥) + 𝑘𝛽𝑘𝑓𝑣wind,𝑏𝑥), (3.2)

where 𝑣wind,𝑏𝑥 is the component of relative wind velocity aligned with the UAS body-

x-axis, ℎ𝑖 is the height of rotor blade 𝑖 with respect to the UAS COM, 𝑘𝛽 is the rotor

blade stiffness, and 𝑘𝑓 is a constant providing a linear approximation to Eq. 8 on

page 7 of [20], summed over 𝑁 rotor blades. The linear approximation is explained

preceding Eq. 14 on page 4 of [21].

With a relative headwind, the rotor blade flapping effect generates a positive

moment about the pitch axis, resulting in a steady-state pitch disturbance through

the duration of the flight. The effects are not limited to moments about the pitch

axis, and must be reckoned with in a robust tethered flight control strategy.

In addition to the generated moments, the total force on the quadrotor from the
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rotor blade flapping effect is approximated by

𝐹 𝐼
𝑓𝑙𝑎𝑝 = −𝜆1

∑︁
𝑖

𝜔𝑖𝑉⊥, (3.3)

where 𝜔𝑖 is the rotational speed of each rotor, 𝑉⊥ is the projection of 𝑣𝐵
𝐵/𝐼 onto

the propeller plane, and 𝜆1 is the rotor drag coefficient, usually empirically derived

for a specific platform as on page 37 of [1]. Alternatively to estimating 𝜆1 directly,

Abeywardena et al. estimate the aggregate parameter

𝑘1 = 𝜆1

∑︁
𝑖

𝜔𝑖. (3.4)

The relationship between autopilot motor speed commands and individual motor

thrust must also be modeled. Motor thrust is related to total angular rotation rate

by the following relation [1]:

𝐹𝐵
thrust = 𝑘𝐹

∑︁
𝑖

𝜔2
𝑖 , (3.5)

where 𝑘𝐹 is the thrust coefficient of the propellers. A similarly-defined torque coeffi-

cient 𝑘𝑇 is used to determine resulting motor torques:

𝑇𝐵
thrust = 𝑘𝑇

∑︁
𝑖

𝜔2
𝑖 . (3.6)

3.1.3 Naval Vessel and Tether Contact Dynamics

In the simulation, the ship is configured to move forward at a constant velocity, with

optional sinusoidal rolling, pitching, and yawing. Tether forces between the moving

tether mount point and the UAS are modeled using the geometry of a catenary curve

with spring-like contact dynamics, following the approach outlined in [27].
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Figure 3-2: Indoor flight testing platform for the air wake measurement system,
pictured within the Vicon motion capture space used to spoof GPS sensing.

3.1.4 Simulated Sensor Suite

All ship-based and UAS sensors involved in both absolute and relative state estima-

tion are implemented with noise and random walk bias levels commensurate with

empirically gathered data. The input sensor data, consisting of the IMU, barometer,

camera, and GPS modules are modeled with added Gaussian white noise and random

walk. The GPS measurements from the modules on the ship and onboard the UAS are

modeled as Gauss-Markov processes, following the strategy outlined in [41] to model

GPS error from ephemeris data, satellite clock, ionosphere, and troposphere-related

effects.

3.2 System Hardware

Two different UAS hardware platforms are used for real-world flight testing of the

autonomous control and estimation algorithms. The indoor flight test platform, to-

gether with a 1:35 scale model of the IR beacon array and tether reel controller, is

pictured in Fig. 3-2.
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Table 3.1: All sensor hardware used for both indoor and outdoor flight testing of the
ship air wake measurement system.

Sensor Placement Product Notes
IR Camera UAS Pointgrey Chameleon 3 4 × 4 binning, shutter speed:

0.005, exposure: -7.5, gain: -
2.5

IMU UAS MPU-6000 Mounted to Openpilot Revo-
lution board.

Barometer UAS MS5611 Mounted to Openpilot Revo-
lution board.

Rover GPS UAS ublox ZED-F9P Configured as a rover in “mov-
ing base”mode.

Base GPS Ship ublox ZED-F9P Configured as a base in “mov-
ing base” mode.

Table 3.2: All computer hardware used for both indoor and outdoor flight testing of
the ship air wake measurement system.

Function Machine Running Processes
Tether reel control Raspberry Pi 3 Tether motor controller, reel HTTP server
Ground station Dell XPS 15 Mission control, reel HTTP client
UAS autonomy ODROID XU4 Control, absolute and relative estimation
UAS autopilot STM32F4 chip ROSflight autopilot

All sensors described in Section 2.4 are listed with their actual hardware product

names in Table 3.1. During indoor flight testing, all actual sensors are used, with

the exception of GPS, which is spoofed from the Vicon [60, 33] motion capture sys-

tem. Similarly, all computers running the various described control and estimation

algorithms are given in Table 3.2.

For outdoor flight testing, a larger airframe equipped with all of the same sensors

and onboard computers is pictured in Fig. 3-3. The outdoor flight testing platform is

also equipped with an additional Raspberry Pi 4 computer, whose sole purpose is to

log time-stamped data from the omnidirectional air probe used to collect the actual

air wake measurements. In Fig. 3-3, a probe placeholder is attached to mimic the

sensor weight distribution during the testing of the autonomy algorithms, which is

what this thesis focuses on.

Although both the indoor and outdoor UAS platforms are equipped with identical
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Figure 3-3: Outdoor flight testing platform for the air wake measurement system. An
air probe placeholder is shown extending out of the front of the airframe, and the
tether attachment points protrude out of the airframe’s sides. The yellow housing,
which contains all onboard computers and all sensors except for the GPS antenna
and air probe, is surrounded by a black foam casing for protection.

sensors and computers, the outdoor platform handles differently and is significantly

heavier than the indoor platform at 7.6 kilograms versus 2.1 kilograms. This difference

necessitates the tuning of separate controller gains for each platform.

The tether reel controller box, pictured between the miniature IR beacon array

and UAS platform in Fig. 3-2, is commanded by the ground station operator via

HTTP requests to set the tether at specified lengths during the course of the flight

for varied sweep geometries. The reel line is handled with PID control and a tension

feedback sensor to ensure that line is not doled out too quickly, which assists with

flight stability.

3.3 Summary

This chapter presents the simulation environment, physical models, and hardware

used to develop, test, and evaluate the control and estimation algorithms for the

air wake measurement system project. The simulation and hardware components

are designed to mirror each other and provide sufficient testing of all system modes
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to accurately assess the system’s suitability for maritime operation. The associated

results for simulation and indoor/outdoor testing are presented in Sections 5.1.1-5.1.3.
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Chapter 4

Theory and Implementation for

DRPGO-Enabled Radiological

Mapping

4.1 System Architecture

With their ability to traverse arbitrary terrain, UAS provide an ideal platform for

performing radiological mapping, which entails covering dangerous areas containing

one or more radiation sources of unknown location and magnitude in a time-sensitive

manner. Previous attempts at remote sensing for radiological search and mapping

with air vehicles have had success with single-agent architectures, such as the Local-

ization and Mapping Platform (LAMP) [35]. There is currently interest in improving

the coverage ability of platforms like LAMP by expanding to multiple agents. More-

over, amid the target applications of first-response, facilities surveillance, and disaster

prevention, it is not always reasonable to assume that absolute sensing such as GPS

will be available or of sufficient quality to reliably localize all agents during the map-

ping process. The requirements for radiological mapping thus entail a multi-agent

architecture capable of joint 3D mapping and radiological sensing.

Possible multi-agent radiological mapping architectures are shown in Fig. 4-1. It
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(a) (b) (c)

Figure 4-1: Possible multi-agent UAS architectures for radiological mapping. Left : A
single, larger UAS generates 3D maps with LiDAR and several smaller UAS exclu-
sively relay radiological sensing data to the central drone. Middle: Several smaller
UAS equipped with radiological and RGBD sensors relay radiation and 3D map data
either to each other or to a central server. Right : A single, larger UAS measures
radiation data, while several smaller UAS exclusively focus on constructing a 3D map
to be shared with the group.

is conceivable that in a multi-agent setting, a high-resolution sensor such as LiDAR

could provide the needed 3D mapping, though its very high weight and cost would

likely limit its ability to be placed on multiple vehicles, leading to dependence on the

coverage ability of a single agent and a single failure point (Fig. 4-1a). This work aims

to explore alternative architectures (Fig. 4-1b-c) and expand remote sensing capabil-

ities for radiological source localization by laying the groundwork for a multi-agent

collaborative SLAM solution utilizing lightweight sensing and a sparse communication

network. The decentralization of perception capability facilitates greater robustness,

more scalability, more rapid and widespread mapping ability, and applicability to a

larger variety of real-world environments.

For the system architectures pictured in Fig. 4-1b-c, the CSLAM-enabled UAS

agents are posited to be equipped with color and depth (RGBD) cameras as well as

UWB ranging modules. The RGBD cameras allow for the agents to estimate their

ego-motion, e.g., using visual inertial odometry (VIO), which forms the backbone for

a distributed pose graph optimization solution. The UWB modules facilitate not only

inter-agent ranging but also ad hoc inter-agent networking for sharing the minimum

required information to obtain globally accurate trajectory estimates of the swarm.
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Under the proposed mapping architecture, radiological mapping can be performed in

a greater variety of environments, including cluttered and indoor spaces.

4.2 Distributed Pose Graph Optimization for Radi-

ological Mapping

Because CSLAM methods rely on globally consistent multi-agent trajectory estima-

tion to construct an accurate 3D map [67], this work focuses on increasing the ro-

bustness and lowering the communication requirements for distributed PGO. A brief

explanation of PGO is presented here to give context to the DRPGO formulation.

Conceptually, PGO can be thought of as a maximum likelihood optimization over

a Bayes net (Fig. 4-2), which incorporates a chronological sequence of state beliefs

𝑃 (𝑋𝑘 = 𝑥𝑘) and conditional probability distributions from state transition models

𝑃 (𝑋𝑘|𝑋𝑘−1 = 𝑥𝑘−1) and measurement models 𝑃 (𝑥𝑘|𝑌𝑘 = 𝑦𝑘) to maximize the joint

probability distribution

max
𝑥𝑘∀𝑘∈0,··· ,𝑁

𝑃 (𝑋𝑘, · · · |𝑌𝑘 = 𝑦𝑘, · · · , 𝑋𝑘−1 = 𝑥𝑘−1, · · · ) (4.1)

in a process known as smoothing. If all probability distributions in the smoothing

problem are assumed to be Gaussian, then Eq. 4.1 can be reformulated as the un-

constrained optimization problem

min
𝑥𝑘∀𝑘∈0,··· ,𝑁

𝑁∑︁
𝑘=0

(𝑥𝑘 − 𝑓(𝑥𝑘−1,𝑢𝑘−1))
⊤𝑄𝑘 (𝑥𝑘 − 𝑓(𝑥𝑘−1,𝑢𝑘−1)) (4.2)

+ (𝑦𝑘 − ℎ(𝑥𝑘))⊤𝑅𝑘 (𝑦𝑘 − ℎ(𝑥𝑘)) , (4.3)

where 𝑓(·) and 𝑄𝑘 represent the state transition model and covariance, and ℎ(·) and

𝑅𝑘 represent the measurement model and covariance.

In the classical PGO problem, all states are 6-DOF poses:

𝑥𝑘 = 𝑇𝑘 ∈ 𝑆𝐸(3), (4.4)
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Figure 4-2: Dynamic Bayes net representation. The nodes in the graph represent ran-
dom variables, corresponding either to robot states 𝑋𝑘 or measurements 𝑌𝑘 through
time. The edges in the graph represent conditional probability relationships governed
by either a measurement model ℎ(·) or state transition model 𝑓(·).

and only the state transition models 𝑓(·) are utilized, taking the form

𝑇𝑘 = 𝑓(𝑇𝑘−1,𝑇𝑘−1,𝑘) = 𝑇𝑘−1𝑇𝑘−1,𝑘, (4.5)

where 𝑇𝑘−1,𝑘 is a measured relative pose coming from e.g., VIO. In addition to chrono-

logically consecutive relative poses, temporally disjoint relative poses can also be in-

corporated into the optimization, as with the relative pose measurements provided

by loop closures. Because of this, the PGO problem with 𝑁 poses is expressed with

the general formulation

min
𝑇𝑘∀𝑘∈0,··· ,𝑁

∑︁
(𝑖,𝑗)∈ℰ

(︀(︀
𝑇−1
𝑗 𝑇𝑖

)︀
� 𝑇𝑖,𝑗

)︀⊤
𝑄

(︀(︀
𝑇−1
𝑗 𝑇𝑖

)︀
� 𝑇𝑖,𝑗

)︀
, (4.6)

where the edges in the pose graph (𝑖, 𝑗) ∈ ℰ and corresponding relative pose measure-

ments 𝑇𝑖,𝑗 are not constrained to the strictly chronological structure shown in Fig. 4-2.

In general, chronologically consecutive pose graph edges are constructed with VIO,

and non-consecutive edges are constructed with loop closure measurements.

The PGO problem (Eq. 4.6) is generally solved by a variation on Gauss-Newton

local search, which relies on computing the Jacobian of the problem residuals

𝑟 (𝑇𝑖,𝑇𝑗,𝑇𝑖,𝑗) ,
(︀
𝑇−1
𝑗 𝑇𝑖

)︀
� 𝑇𝑖,𝑗 ∈ R6, (4.7)

which evolves on a manifold, illustrated in Fig. 4-3 with ℳ = 𝑆𝐸(3). Because the
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Figure 4-3: Illustration of the operation of adding the tangent space vector ∆𝑥 ∈
𝒯𝒳1ℳ to the manifold quantity 𝒳1 to obtain the new quantity 𝒳2 = 𝒳1 �∆𝑥 on the
manifold. 𝒳1 does not live in a vector space, but the incremental quantity ∆𝑥 lives
in a tangent vector space which is tangent to ℳ precisely at 𝒳1, and thus is still a
vector.

residuals evolve on a manifold, their Jacobians are calculated using the retraction �

over decision variables 𝑇 = (𝑇𝑖,𝑇𝑗) ∈ 𝑆𝐸(3)× 𝑆𝐸(3):

𝑇𝜕𝑟(𝑇 )

𝜕𝑇
, lim

𝜏→0

𝑟(𝑇 � 𝜏 )− 𝑟(𝑇 )

𝜏
∈ R6×12, (4.8)

𝜏 ∈ R12 ∼= se(3)× se(3), (4.9)

(𝑇 � 𝜏 ) ∈ 𝑆𝐸(3)× 𝑆𝐸(3). (4.10)

To solve the PGO in a distributed setting, each agent constructs its own pose

graph, which includes select shared poses with other agents only if an inter-agent

loop closure is found. Otherwise, the process of incorporating VIO and intra-agent

loop closures to iteratively solve for the most likely sequence of poses 𝑇𝑘 resembles

the single-agent PGO problem. When poses are shared among agents, care must

be taken to ensure that each received neighbor pose is inserted into the graph at

the correct point in time. One way to accomplish this is to ensure that all agents’

clocks are synchronized, and that VIO-derived poses are only inserted into the graph

at pre-determined and consistent intervals. With the synchronous method, only time

delay associated with inter-agent communication needs to be taken into account when

incorporating inter-agent measurements.
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4.3 Distributed Range-Enhanced Pose Graph Opti-

mization (DRPGO)

In order to increase the robustness in terms of global accuracy as well as communi-

cation requirements of distributed PGO, an additional UWB range sensor is incorpo-

rated into the problem. Its measurement model is

ℎ(𝑇𝑖,𝑇𝑗) = ||𝑡𝑖 − 𝑡𝑗||2, (4.11)

where 𝑡 ∈ R3 is the translational component of 𝑇 ∈ 𝑆𝐸(3). The UWB range mea-

surements are incorporated into the pose graph as inter-agent measurements corre-

sponding to two agents’ poses at the same point in time. Similar to Eq. 4.7, the

range measurement residual is constructed using Eq. 4.11 as

𝑟 (𝑇𝑖,𝑇𝑗, 𝑑𝑖,𝑗) , ||𝑡𝑖 − 𝑡𝑗||2 − 𝑑𝑖,𝑗 ∈ R. (4.12)

With the incorporation of the range measurement residuals, Eq. 4.6 becomes

min
𝑇𝑘∀𝑘∈0,··· ,𝑁

∑︁
(𝑖,𝑗)∈ℰpose

||
(︀
𝑇−1
𝑗 𝑇𝑖

)︀
� 𝑇𝑖,𝑗||2𝑄 +

∑︁
(𝑖,𝑗)∈ℰrange

||||𝑡𝑖 − 𝑡𝑗||2 − 𝑑𝑖,𝑗||2𝑄, (4.13)

where 𝑑𝑖,𝑗 ∈ R is the measured range between pose 𝑖 and pose 𝑗 in the graph.

In DRPGO, the UWB range measurements take the place of inter-agent loop

closure detections. An advantage of this is that significantly less information needs

to be shared between agents, as the entire distributed data association problem is

circumvented. The cost of this diminished communication requirement is that many

more inter-agent range measurements are needed to improve the accuracy of the

global pose graph compared to a single inter-agent loop closure detection. According

to the observability analysis performed in [9], computing relative position between

two agents ranging off of each other requires that the actual relative position vectors

corresponding to the range measurements consist of at least two mutually exclusive

subsets, each containing three linearly independent vectors. What this suggests is
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that the agents should be engaged in constant, non-planar relative motion if the

full 3D relative position estimate is to be improved. It also requires that relative

range measurements be shared at a relatively high rate compared to the hypothetical

frequency of shared loop closure measurements, which is in general a safe assumption.

An important caveat to the observability analysis in [9] is that it applies only

to relative position accuracy between agents, and not global (or absolute) accuracy.

While this condition often suffices for operations such as formation flying and colli-

sion avoidance, it is not acceptable for a CSLAM application, in which the goal is

to construct a globally accurate and consistent map of an environment. VIO mea-

surements suffer from this same problem in classical PGO and SLAM since they are

relative measurements being used in a problem that aims for global accuracy. At the

single-agent scale, the relative VIO measurement problem is usually solved through

the use of loop closures, which “anchor” the entire pose graph in a concrete fashion by

identifying locations that have been visited before. The corrective loop closure mea-

surements are thus able to correct for the drifting VIO estimate to achieve accuracy

in a global, or absolute, sense.

Similarly, at the multi-agent level, inter-agent range measurements prevent rela-

tive drift between individual agents’ VIO-based trajectory estimates, but they cannot

prevent the entire map from drifting with respect to the global frame. Stated differ-

ently, the range measurements anchor the agents’ trajectories to each other, but not

to the global map.

The proposed solution to the range anchoring problem is to distinguish two types

of agent behavior under the DRPGO scheme: explore and anchor. The terminology

is inspired by a central challenge in the active SLAM literature, which is finding the

optimal balance between exploration (i.e., building a map as quickly and efficiently

as possible) and exploitation (i.e., seek to revisit locations to find loop closures).

With the explore/anchor strategy, an explorer agent focuses unilaterally on expand-

ing the map by traversing previously unvisited areas, and an anchor agent focuses

predominantly on staying within a certain vicinity to obtain intra-agent loop closure

measurements.
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The presence of high-rate inter-agent range measurements in DRPGO affords a

simple method for assigning anchor agents. Returning to the anchor analogy, if any

anchor at all is provided between the swarm and the global map, then any agent

tethered to that anchor will also be anchored to the global map. Thus, if a communi-

cation sub-graph is defined as a connected graph between agents where each edge is

an inter-agent range measurement, then only one agent within that sub-graph needs

to be assigned as an anchor; all other agents can focus on exploration. This method-

ology reduces the problem of optimizing between exploration and exploitation in a

multi-agent setting to the problem of ensuring that the global communication graph

never becomes completely disjoint, where no agents are able to communicate with any

other agent. Moreover, it simplifies the active SLAM problem while simultaneously

drastically reducing the necessary bandwidth of inter-agent communication by side-

stepping the need for distributed data association. Algorithm 1 gives an overview of

the anchor assignment problem for a single agent in DRPGO, which includes identi-

fying current communication sub-graphs and picking an agent to act as the anchor for

that sub-graph. It provides a simplistic, minimalist implementation where the agent

with the smallest ID in a sub-graph is assigned as the anchor, and can be replaced

with more sophisticated consensus strategies for robustness. The intuition behind the

anchor assignment strategy is corroborated by the presented simulation experiment

results in Sections 5.2.1-5.2.2.

Ensuring that there is always an anchor agent within each communication sub-

graph ensures that, as the sub-graph topologies evolve in an ad hoc fashion, global

accuracy and consistency is maintained. The entire DRPGO strategy for improved

CSLAM, then, entails anchor assignment and incremental distributed, time-synchronized

pose graph optimization with inter-agent range measurements. Algorithm 2 provides

the pseudo-code for a single agent running DRPGO, assuming that all agent clocks

are synchronized. The sub-routine SeekLC stands in as a place-holder for execut-

ing a flight pattern that limits navigation to the already-constructed map, seeking

locations known by the trajectory history to have already been visited. Likewise,

the sub-routine Explore steers navigation towards the frontier of the currently-known
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Algorithm 1 DRPGO Synchronous Anchor Agent Selection
Input: ID of agent 𝜈.
Input: Anchor establishment interval ∆𝑡𝑎𝑖.
Input: Anchor establishment window ∆𝑡𝑎𝑤.
Output: ID of current anchor agent 𝜄.
1: Initialize connected index set Φ = {𝜈}.
2: while True, Executed every ∆𝑡𝑎𝑖 + ∆𝑡𝑎𝑤 do
3: while 𝑡 ≤ ∆𝑡𝑎𝑤 do
4: Receive connected index list from neighbor agents ℐ asynchronously.
5: Φ = Φ ∪ ℐ.
6: Publish Φ to neighbor agents.
7: end while
8: 𝜄← min(Φ).
9: end while

map.

4.4 DRPGO-CSLAM Dataset Generation

To help validate the claims associated with DRPGO’s global accuracy and to as-

sess its suitability for use in realistic scenarios with multiple UAS, DRPGO-CSLAM

datasets are generated from several different photorealistic simulated environments

and one real-world environment. Specifically, the datasets consist of the following

time-stamped data:

• IMU accelerometer and gyroscopic measurements

• RGB images

• VIO pose estimates

• Altimeter measurements, calculated from ground truth with added noise

• Inter-agent UWB range measurements, calculated from ground truth with added

noise

• Intra-agent loop closure detections

• Inter-agent loop closure detections
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Algorithm 2 DRPGO
Input: ID of agent 𝜈.
Input: Optimization interval ∆𝑡.
Input: Anchor index 𝜄, supplied by Alg. 1 on a separate thread.
1: Initialize DRPGO pose graph 𝒫 (Eq. 4.13).
2: while True, Executed every ∆𝑡 do
3: Extract VIO relative pose 𝑇VIO.
4: Add pose to graph 𝒫 ← 𝑇VIO (Eq. 4.7).
5: Send range requests to neighbor agents, along with most recent pose 𝑇𝑓 ∈ 𝒫 .
6: if 𝜈 = 𝜄 then
7: SeekLC().
8: if Loop closure found then
9: Add loop closure to graph 𝒫 ← 𝑇LC (Eq. 4.7).

10: Optimize 𝒫 .
11: end if
12: else
13: Explore().
14: Add received ranges and neighbor poses to graph 𝒫 ← 𝑑𝑖,𝑗,𝑇𝑗 (Eq. 4.12,

4.7).
15: Optimize 𝒫 .
16: end if
17: end while

and are derived from:

• The EuRoC MAV Dataset [6] (3 agents)

• AirSim [45] (4 agents)

• Flightmare [50] (4 agents)

The AirSim (Fig. 4-4) and Flightmare (Fig. 4-5) simulators are chosen for the

photorealism of their environments as well as their suite of implemented sensors.

AirSim distinguishes itself with the large amount of unique environments that are

made publicly available, built using the popular Unreal Engine. Flightmare, built

on Unity, has the advantage of allowing the user to easily spawn custom objects in

one of their pre-built environments, also allowing for a large degree of configurability.

Both simulators provide built-in RGBD sensing for their unmanned air vehicles, and

although the depth component is not utilized in this work, it can potentially be
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Figure 4-4: Sample environments from AirSim, an Unreal Engine-based simulator,
used to generate datasets for PGO experiments.

Figure 4-5: Sample images from Flightmare, a Unity-based simulator that provides
RGBD sensing and UAS dynamics simulation, used to generate datasets for PGO
experiments.

useful for further study of the integration of DRPGO into a full-fledged CSLAM

system. Datasets from feature-rich, feature-sparse, open, and cluttered environments

are generated using the available configurations of the two simulators.

Because the DRPGO evaluations focus exclusively on pose graph optimization,

the outputs of the other elements of CSLAM are added to the datasets as part of

the dataset pre-processing. Figure 4-6 illustrates this process. Raw RGB, IMU, and

truth data are obtained from the AirSim and Flightmare in a variety of simulated

environmental conditions. For each dataset, the raw data is then processed by VINS-

Mono [39] to obtain the VIO measurements for each agent and by CCM-SLAM [44] to

obtain the intra- and inter-agent loop closure detections. UWB range measurements

are generated to coincide with each VIO measurement, and are generated by adding

zero-mean Gaussian noise with a standard deviation of 10 centimeters to the true

inter-agent ranges.
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Figure 4-6: Visualization of the PGO dataset generation process. Raw sensor data
is generated from either AirSim or Flightmare and subsequently processed by a cen-
tralized SLAM algorithm to generate VIO and intra-/inter-agent loop closure mea-
surements. These measurements, along with synthesized UWB range measurements,
are processed by a PGO evaluation scheme that allows for giving more importance
to either loop closure or range measurements on a sliding scale.

Once the datasets are generated, they are each used to solve the distributed version

of Eq. 4.13 (see Section 4.6) with configurable solver covariances 𝑄 for the loop closure

and range measurements. Making 𝑄 configurable for the different measurement types

allows for insights to be made about the relative importance of loop closure versus

range measurements as they are allocated more or less importance in the solver. An

analysis of these results, given in Section 5.2.1, informs the intuitions behind the

value of UWB range measurements and having an anchor assignment strategy for the

global accuracy of DRPGO.

4.5 Simulation for DRPGO Prototyping

After utilizing the DRPGO-CSLAM datasets to draw conclusions about the relative

importance of loop closures and UWB range to the global accuracy of DRPGO, the
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full DRPGO algorithm with anchor selection (Algorithm 2) is developed and tested

in a dynamics-only Python simulation environment designed for rapid prototyping.

In the simulation, individual agent dynamics are run as PID-based trajectory

following of a bounded random walk over the state space defined on 𝑆𝐸(3). For

communication sub-graph identification and anchor agent assignment, Algorithm 1

is replaced by a breadth-first-search over an adjacency matrix constructed at each

time step using the maximum communication distance parameter, outputting the

communication sub-graphs and allowing for a random anchor assignment for each

new sub-graph in the same fashion as with Algorithm 1.

Inter-agent sharing of range and select pose information occurs synchronously to

ensure that the measurement nodes are inserted into the correct index of each agent’s

pose graph. Commensurate with the procedure outlined in Algorithm 2, each explorer

agent optimizes its pose graph with the range measurements synchronously, whereas

each anchor agent does not incorporate the inter-agent range measurements, but

only shares them along with the requested neighbor poses. Instead, an anchor agent

focuses on adding intra-agent loop closures (i.e., loop closure with its own trajectory)

to its own pose graph to anchor its own global accuracy, which its neighbors in the

communication graph depend on.

The simulation environment allows for configuration of the individual measure-

ment noise levels, environment size, number of agents, and max communication range.

Its emphasis on the core, distributed functionality of the DRPGO algorithm and not

on details such as clock synchronization allows for proof-of-concept rapid prototyping

only. That said, its level of fidelity does allow for conclusions to be drawn about the

computational feasibility and global accuracy/consistency expectations for DRPGO,

to be corroborated by more in-depth hardware testing.

4.6 DRPGO Solver Implementation

The DRPGO solver is written using the Ceres Solver C++ library [2], which is meant

for solving large-scale nonlinear least-squares problems such as Eq. 4.13. One of
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Ceres Solver’s greatest strengths is an efficient auto-differentiation implementation,

which suggests that Eq. 4.8 is solved “for free" as long as the user specifies a defi-

nition for � pertaining to the problem’s decision variables that live in 𝑆𝐸(3). The

definition for � is provided to Ceres using the Sophus library [52], which provides

C++ implementations of 𝑆𝑂(3) and 𝑆𝐸(3). The residual definitions (Eq. 4.7 and

4.12) are also provided to Ceres using Sophus and Eigen [18].

To interface the DRPGO implementation with the simulation environment out-

lined in Section 4.5, Python wrappers are written for the solver, 𝑆𝑂(3), 𝑆𝐸(3), and

residual implementations.

4.7 Summary

This chapter presents a systems-level analysis of the 3D mapping problem for radi-

ological search and mapping. A discussion of distributed pose graph optimization

and its applicability to radiological mapping is given, leading into the presentation

of a novel method for incorporating inter-agent range measurements into the pose

graph. Datasets and a simulation environment are developed for testing the global

accuracy of the presented DRPGO algorithm, whose implementation details are also

given. The testing results from the dataset and simulation environment are given in

Sections 5.2.1 and 5.2.2, respectively.
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Chapter 5

Testing and Results

5.1 Air Wake Measurement Tests

5.1.1 Simulation Tests

Simulation-based results are provided that validate the performance of the absolute

state estimator, the relative state estimator, and the autonomous control strategy in

a simulated windy environment with implemented sensor noise and bias. Specifically,

the results in this section correspond to simulation tests run in the environment

presented in Section 3.1 with relative headwind speeds in the vicinity of 10 meters

per second, which is in the upper range of expected average relative wind speeds

to be experienced during tethered flight behind a ship. The simulated flights from

which these results are extracted carry out the tasks of takeoff, establishing tether

tension, and sweeping behind a moving ship at a commanded altitude, exciting all of

the different flight modes of the UAS for trajectory tracking performance evaluation.

The performance of the absolute state estimator is evaluated on the basis of how

well the states used in the flight control feedback loop conform to the true state

values provided by the simulator. These feedback states consist the UAS altitude,

body-frame lateral velocities, attitude, and angular rates.

Both outdoor and simulation testing demonstrates that while GPS provides less

drift-prone velocity than position estimates, the barometer provides sufficient, al-
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Figure 5-1: Absolute state estimate of UAS yaw with respect to the inertial frame
over the course of a simulated ship air wake measurement flight. Attitude corrections
in the estimate are activated once the IR beacon array comes into view 40 s into the
simulation.

beit noisy, altitude stability to ensure that the absolute altitude estimate does not

drift beyond approximately one meter from the true altitude. A similar effect, well-

documented in small UAS applications, occurs with the estimated UAS attitude as

the IMU gyro biases are corrected by the less drift-prone accelerometer measure-

ments. The attitude component most susceptible to drift over very short time scales

is the yaw angle, which relies principally on gyro signal integration in the absence

of corrective vision-based attitude measurements from the IR beacon array. Figure

5-1 demonstrates the amount of drift exhibited by the yaw angle estimate until the

IR beacon array comes into full view of the onboard camera 40 seconds into the

simulation, subsequently providing very precise attitude estimates. Moreover, it is

important to note that while no active yaw control is employed in the flight control

scheme, a comparison between Fig. 5-1 and 5-2 reveals the passive yaw control effect

of a taut tether, which maintains the UAS pointing towards the ship deck.

The performance of the relative state estimator is based principally on the ac-

curacy of the estimated relative pose. Accurate estimated velocity states are also
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Figure 5-2: Relative state estimate of UAS y position w.r.t. and expressed in 𝑆 over
the course of a simulated ship air wake measurement flight. Accurate relative state
position estimation is facilitated by the fusion of differential GPS and, after 40 s into
the simulation, vision-based pose measurements.

important for propagating the pose state in the event of differential GPS or vision

measurement dropouts as well as compensating for relative UAS velocity when post-

processing the measured wind velocity vectors. The relative estimator fuses the same

sensors as the absolute estimator for velocity estimation, but with the added bene-

fit of centimeter-level accuracy in relative position and single-degree-level accuracy in

attitude from the differential GPS and vision-based pose sensors. Moreover, when the

estimate of 𝑞𝑆
𝐼 converges to a steady-state value after the IR beacon array comes into

view, the full relative state estimate is found to be very stable and accurate, which is

to be expected given the accuracy of the relative sensors. Figure 5-2 provides insight

into both the accuracy of the relative position estimate as well as the stability and

coverage of the sweeping patterns necessary for generating an informative vector field

of measured air wake velocities.

With stable absolute and relative state estimates, the success of the autonomous

control strategy is primarily a function of how well the controller is able to track

the commanded absolute UAS pitch, lateral velocity, and altitude once the passively
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Figure 5-3: UAS pitch tracking performance throughout a simulated ship air wake
measurement flight. A steady-state pitch disturbance of ≈ 7∘ is induced by the rotor
blade flapping effect at a relative wind speed of 10 m/s. Over all simulation trials,
the disturbance is bounded and does not have any destabilizing effect on the flight
trajectory due to the tether constraint.

stabilizing effect of the tether is verified. Figure 5-3 demonstrates the pitch tracking

performance of the control strategy at a relative wind speed of 10 meters per second.

Due to the rotor blade flapping effect, the relative headwind induces a steady-state

pitch disturbance of approximately seven degrees. Through testing at various wind

speed levels, it is observed that the wind-induced pitch disturbance can be expected

to range from zero to ten degrees. Because the pitch disturbance is bounded and has

no appreciable effect on flight stability due to the ability of the tether reel controller

to maintain a relatively taut tether, no attempt is made to place integral control on

pitch (which can introduce low-frequency oscillations). Additionally, no effort is made

to estimate the wind vector in real time for computing feed-forward pitch control.

Though integral control is avoided in most cases, it is used in lateral velocity

tracking in order to achieve the desired area coverage in the face of increasing aero-

dynamic drag as the UAS sweep angle increases. Because the lateral velocity vector

is defined to be perpendicular to the tether, the tether does not lead to integrator
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Figure 5-4: UAS lateral velocity tracking performance over the course of a simulated
ship air wake measurement flight. Aerodynamic drag effects are visible after 50 s,
when the UAS begins to fly out from directly behind the moving ship. Despite these
drag effects, velocity tracking is observed to be tractable with PID control.

windup as would be the case with a longitudinal or position-based reference state

command. Figure 5-4 demonstrates the ability of the controller to track reference

lateral velocities such that the UAS is able to sweep angles up to 50-60 degrees even

in the presence of heavy wind. Additionally, Fig. 5-5 provides a top-down view of one

such sweeping trajectory, showing how the UAS is able to cover the region where air

wake effects (defined by wind direction with respect to the ship superstructure) are

present.

It is apparent from analyzing tracking performance that the greatest difficulty

comes in tracking altitude, as shown in Fig. 5-6. Comparing the ESKF altitude

estimate with the reference altitude command, the state exhibits a random walk

centered on the commanded value. This behavior is attributable to both the rotor

blade flapping effect as well as the fact that altitude controllability is weakened with a

sustained non-zero aircraft pitch value. The altitude error, however, remains bounded

at around half a meter over the course of all simulation trial flights with different wind

speeds. This level of error is dealt with for landing operations by allowing the tether
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Figure 5-5: Top view of a sweep trajectory from a simulated UAS flight in the presence
of 10 m/s wind. Position values expressed in the 𝑆 frame. The commanded trajectory
is tailored to the principal wind direction, providing symmetric coverage about the air
wake generated by the wind’s interaction with the ship superstructure. In order for a
symmetric sweep like the one shown, the estimated wind direction must be measured
and reported to the trajectory generator before flight.

to “reel in” the aircraft in the absence of integral control on altitude.

In addition to reference state tracking, the ability to automatically deduce tether

tautness is important for the trajectory generator to determine when it is feasible

to begin sweeping with pitch and lateral velocity commands. For simulated testing,

𝑓𝐵
ext,thresh is assigned the amount of backward thrust generated with a pitch value of

10 degrees, since this would correspond to the amount of tension in a taut tether in

the absence of wind and at an altitude that is level with the tether reel controller. As

suggested by Fig. 5-7, this choice of 𝑓𝐵
ext,thresh leaves enough buffer to make a binary
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Figure 5-7: Comparison between the x and z components of 𝑓𝐵
ext versus 𝑓𝐵

ext. The
estimated forces in the UAS 𝑏𝑥, 𝑏𝑧 directions reveal the takeoff point at ≈ 8 s and
the point of tether tautness at ≈ 15 s. The tether tension threshold, 𝑓𝐵

ext,thresh, is
compared with the x-component of 𝑓𝐵

ext to determine tether tautness.
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determination of tether tautness even with significant aerodynamic forces opposing

the force of the tether. A close examination of the z-component of 𝑓𝐵
ext on the plot also

reveals the various stages of flight, such as takeoff at 8 seconds and tether tautness at

15 seconds. The relatively large z-component of 𝑓𝐵
ext is attributable to the UAS pitch

angle and the fact that the estimated external force is expressed in 𝐵.

These results over many simulated trials with significant aerodynamic distur-

bances, coupled with the implementation of all relevant dynamic effects and the efforts

made to validate the modeled effects against empirical motion capture data, demon-

strate the suitability of the presented control and estimation strategies for the air

wake measurement environment. In aggregate, the body of testing work performed

to date instills confidence in the ability of the UAS to perform the allotted air wake

measurement task in hardware and to corroborate these presented results in a mar-

itime environment.

5.1.2 Indoor Flight Tests

Hardware flight testing in a controlled indoor environment provides further validation

of the simulation results in Section 5.1.1. Each performance indicator from the sim-

ulated tests is measured in a replicated testing scenario in hardware. In the indoor

environment, motion capture software is used to evaluate tracking and state estima-

tion accuracy, as well as spoof absolute and relative GPS sensor measurements with

added bias and noise. Apart from GPS, all other sensor data come from real-time

hardware. The indoor flight testing results bear striking similarity to those obtained

in simulation, further validating the effectiveness of the flight control software for

real-world air wake measurement missions.

The simulation environment models the UAS dynamics, tether constraint, ship

motion, wind/aerodynamic effects, and a full sensor suite. The indoor testing setup

is designed to replicate those conditions as closely as possible, as they are meant to

be representative of the real maritime mission environment. Figure 5-8 shows the

indoor flight testing arrangement, which consists of the UAS hardware platform and

sensor suite, tether reel controller, 1:35 scale model LED beacon array, and artificial
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Figure 5-8: Physical setup for the indoor flight test trials. The tether length for wake
survey mode is 7 meters, and a 1:35 scale beacon array is used for real-time relative
pose estimation via a combination of real and spoofed sensor data. Generated wind
provides realistic wind disturbances despite a static 𝑆-frame.

wind generators. As can be seen from the figure, reflective markers are also attached

to both the UAS and beacon array so that the Vicon motion capture system is able

to provide truth references for their states. These truth references are useful both

for evaluating tracking and estimation performance as well as forming the basis for

spoofed sensor measurements. The indoor setup is able to replicate (in miniature)

the simulated and hypothetical maritime environments, as real hardware, real-time

sensing, and substantial wind disturbances are used during tethered flight. In terms

of real-time sensing, the following actual sensor data is used:

• Camera and corresponding relative pose estimation,

• Barometer altitude and pressure data,

• IMU accelerometer and gyro data,

and the following sensor data is spoofed from motion capture (with added noise and

bias levels consistent with those described in Section 3.1):

• Absolute GPS measurements of UAS position,
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• Relative GPS measurements between the tether reel controller and UAS.

The results presented in this paper correspond to the physical arrangement in Ta-

ble 5.1.

Table 5.1: Physical parameters for the presented air wake measurement system indoor
hardware flight tests.

Parameter Value

Wind Speed (Furthest Point in Trajectory) 5±0.5 meters/second

Wind Speed (Closest Point in Trajectory) 6±0.75 meters/second

Tether Length 7 meters

Sweep Angle 40∘

In total, four full flight tests, consisting of takeoff, tether tension establishment,

several sweeps, and landing, have been carried out with artificial wind, with an addi-

tional four tests without wind. The results in this section present representative data

indicative of the observed flight and state estimation performance over all flight trials

with wind.

The relative estimator, fusing spoofed GPS and actual vision, barometer, and IMU

data, achieves comparable accuracy and consistency (Fig. 5-9) to the relative estima-

tor fusing purely simulated data (Fig. 5-2). Similarly, relative attitude estimation

accuracy is comparable to simulation levels.

As with Fig. 5-3, Fig. 5-10 depicts a steady-state pitch offset induced by the 4–7

m/s wind. The offset is not present in the absence of wind, validating the simulation

model for the rotor blade flapping effect. Empirically, it has been determined that

sustained roll and pitch angles over 30 degrees begin to diminish the altitude control

authority of the UAS. It is important to note that roll and pitch angles of that size

have only been imposed artificially, and have never arisen by accident due to wind

disturbances–especially when the tether is properly attached near the UAS center-of-

mass. That said, the trajectory generator is designed to enact emergency return-to-

home functionality should sustained, excessive pitching ever arise mid-flight.
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Figure 5-9: Relative state estimate of UAS y position w.r.t. and expressed in 𝑆 over
the course of an entire indoor hardware flight test with multiple sweeps. Accurate
estimation is facilitated by the fusion of spoofed differential GPS and real vision-based
pose measurements.
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Figure 5-10: UAS pitch tracking performance throughout an entire indoor hardware
flight test with multiple sweeps. A steady-state pitch disturbance between 5 and 10
degrees is induced by the rotor blade flapping effect at a relative wind speed of 4–7
m/s, very similarly to observed simulation results in Fig. 5-3.
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Figure 5-11: Comparison between the x and z components of 𝑓𝐵
ext versus 𝑓𝐵

ext for an
indoor hardware flight. As with simulation results in Fig. 5-7, the estimated forces
in the UAS 𝑏𝑥, 𝑏𝑧 directions reveal the takeoff point at ≈ 3 s and the point of tether
tautness at ≈ 20 s.

Unlike the simulated external force estimation performance results in Fig. 5-7, the

hardware results in Fig. 5-11 do not have a truth reference for the actual resultant

forces caused by wind and the tether. However, a qualitative comparison between

the simulation and hardware estimates points to the hardware system’s ability to

accurately deduce both when the tether is taut as well as when the UAS is grounded

versus in the air. Moreover, no adjustment to the rough tether tautness threshold is

needed due to the quality of the physical parameter matching between the simulated

and hardware platforms.

Similarly to the simulation results in Fig. 5-5, Fig. 5-12 demonstrates that the

hardware platform is able to perform the entire commanded 40-degree sweep angle

despite wind disturbances. In the case of indoor flight testing, the limiting factor is the

size of the flight space. Because the sweep operation is controlled in a low-bandwidth

feedback loop by the trajectory planner using the estimated relative position, sweep

angle ability is maintained in spite of wind disturbances and a lack of inner-loop

attitude integrator control.

Indoor testing results with a combination of actual and spoofed sensing indi-
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Figure 5-12: Top view of a sweep trajectory from indoor flight testing with a tether
length of 7 m and wind speed of 4-7 m/s.

cate that the constructed hardware platform achieves the same level of mission per-

formance as the previously fine-tuned simulated platform. To achieve comparable

performance in hardware, controller gain and Kalman filter covariance tuning are re-

quired; however, no appreciable re-writing of the code used in simulation is necessary.

With hardware performance and simulation results validated, next steps include ex-

panding on the results presented here with a moving base station, real-time outdoor

GPS sensing, and wind velocity measurement with the omnidirectional air probe.

5.1.3 Outdoor Flight Tests

In addition to the autonomy software validation from simulation and indoor flight

testing, outdoor flight testing provides the opportunity to assess system integrity

when subjected to real-world disturbances and real sensor noise conditions. To that

end, for the outdoor flight tests, all real sensor hardware is used, and the ability of

the air wake measurement system to maintain an accurate relative state estimate

under sweeping conditions is assessed. Figure 5-13 depicts the outdoor testing setup.

The UAS launches from a trailer bed which has mounted on it a full-scale IR beacon
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Figure 5-13: Outdoor testing setup for the air wake measurement system. Pictured
are the trailer bed, meant to stand in for a ship deck, with mounted IR beacons, the
tether reel controller, and a base station GPS. The UAS platform is seen engaged in
tethered flight as the tether line is doled out to its specified sweep length.

array, the tether reel controller, and the base station GPS. In essence, the outdoor

testing setup differs from the indoor flight testing setup in that it encompasses a

much larger flight area, is equipped with a full-scale beacon array, and has real, not

spoofed, GPS and wind. Only the ship-mounted magnetometer is not used, leaving

the ship orientation with respect to the NED frame to be estimated by fusing vision

and differential GPS measurements.

Three separate outdoor flights with different tether sweep lengths (8 meters, 13

meters, 18 meters) are performed as the UAS uses the full sensor suite to estimate

its relative state in real-time. Figure 5-14 visualizes this process, depicting the UAS’s

first-person view of the beacon array, a ground station view of the tethered UAS,

and a rendering of the UAS’s current estimated state at a snapshot in time for all

three flights. The rendered arrows in the right portion of the figure also depict the

UAS’s current estimate of where inertial North is in the absence of a ship-mounted

magnetometer. A qualitative viewing of the arrows indicates consistency across the

three flights. This consistency is key, as it allows the relative ESKF to fuse both

vision and differential GPS measurements to back out an accurate relative pose with

78



respect to the ship frame.

In the absence of true state data for quantitative comparison, Figures 5-15–5-17

present the estimated sweeping profiles for the three tethered flights. As with the

simulation and indoor flight trials, good coverage of the hypothetical air wake region

is demonstrated. In terms of relative position estimation accuracy, the fact that each

sweeping arc traces out a stable radius corresponding to the correct tether length

instills confidence that the differential GPS and vision measurements are being fused

correctly. Only Fig. 5-17 indicates slight inconsistency in the shape of the sweep,

but this is in part attributable to the fact that the tether was temporarily slackened

during the third flight.

One important note that is not apparent in the sweep profile plots is that beyond

a distance of approximately 11 meters, the vision pose measurements from the IR

beacon array drop out. This is due to a thresholding parameter tuning issue given

the bright day, and means that both the 13 meter and 18 meter flights execute their

full-length sweeps without the assistance of the vision system. As can be seen from

Figures 5-16–5-17, however, the relative position estimate is able to be maintained by

the differential GPS measurements alone because the correct inertial North direction

was previously deduced by the estimator with the help of the vision measurements

toward the beginning of the flight. This observed behavior validates the ESKF’s

robustness to temporary sensor dropouts, which is essential for real-world operation.

The presented sweep area and relative position estimation results from the three

outdoor flight tests, taken together with the simulation-based and indoor flight tests,

demonstrate that the air wake measurement system is able to handle real-world dis-

turbances and sensor degradation to the extent that it can complete its mission of

autonomously navigating the air wake zone under a variety of challenging conditions.

The system is capable of the flight coverage breadth and state estimation accuracy

needed for the in-situ collection of air flow data in a turbulent and feature-starved

environment.
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Figure 5-14: Visualization of the three presented outdoor flights of the air wake
measurement system. The left panes show the first-person view of the UAS camera
with the full-scale IR beacon array in frame. The middle panes give a ground station
view of the UAS mid-flight at the end of a taut tether. The right panes illustrate key
outputs of the relative estimator. The UAS (𝐵) and ship (𝑆) frames are both drawn,
following the front-right-down body frame convention. The beacon array positions
are also drawn as red dots for scale reference. Finally, the rendered 3D arrows in the
sky point in the direction of the current estimated inertial North, whose accuracy
and consistency is key to successfully fusing differential GPS and vision-based pose
measurements.
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Figure 5-15: Sweep flight profile for outdoor flight test with a tether length of 8
meters.
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Figure 5-16: Sweep flight profile for outdoor flight test with a tether length of 13
meters.
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Figure 5-17: Sweep flight profile for outdoor flight test with a tether length of 18
meters.

5.2 Distributed Range-Enhanced Pose Graph Opti-

mization Tests

5.2.1 DRPGO-CSLAM Dataset Tests

The performed experiments on the DRPGO-CSLAM datasets explained in Section

4.4 highlight the relative importance between loop closure measurements and inter-

agent range measurements to global accuracy in distributed pose graph optimization.

Furthermore, they establish the observations about the importance of anchoring that

lay the foundation for the DRPGO experiments presented in Section 5.2.2.

The first set of presented results (Fig. 5-18-5-22) focuses on the EuRoC-derived

DRPGO-CSLAM dataset. Coming from visual-inertial data collected in a feature-rich

indoor space, the initial VIO estimates are reasonably accurate on their own. Figure

5-18 gives the root-mean-squared error (RMSE) for each of the three translational

and three rotational degrees of freedom of each agent’s entire estimated trajectory,

using VIO alone, as a function of number of poses added to the graph. While the
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Robot 0
Robot 1
Robot 2

Figure 5-18: Cumulative global RMSE of the 6-DOF estimated trajectories of the
three agents from the EuRoC MAV dataset, relying on VIO alone.

translational components of Robot 2’s trajectory estimate are less accurate due to a

faster and jerkier trajectory, the trajectory errors for Robot 0 and 1 are maintained

at the sub-meter level. Moreover, the rotational errors are consistently hover around

only 2.5 degrees.

The global accuracy of the 6-DOF estimates for each robot is observed to improve

intuitively as additional sensing modalities are added. Figure 5-19, which depicts the

RMSE results after incorporating noisy altimeter measurements, shows a nominal

increase in the estimation accuracy of the global translational z-component 𝑡𝑧, while

all other degrees of freedom exhibit the same overall accuracy levels as with Fig. 5-18.

Inter-agent range measurements are incorporated for the first time in Fig. 5-20,

which gives RMSE results for VIO with altimeter and range measurements added

with each new pose in the graph. From the translation error plots, it is apparent

that Robot 2’s position estimate improves while that of Robot 0 and 1 remain mostly

unaffected. Differential roll and pitch is completely untouched compared to the results

from Fig. 5-19; the only change in rotation accuracy is in Robot 0’s yaw estimate,

which worsens compared to the VIO-only solution. These results demonstrate that
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Robot 0
Robot 1
Robot 2

Figure 5-19: Cumulative global RMSE of the 6-DOF estimated trajectories of the
three agents from the EuRoC MAV dataset, fusing VIO and altimeter data using
PGO.

a naive incorporation of inter-agent range measurements will not necessarily improve

all agents’ state estimates across the board.

Alternatively to inter-agent range measurement incorporation, Fig. 5-21 gives error

plots with loop closure measurements prioritized. Analyzing the steady-state RMSE

values, the global accuracy of all agents’ estimates is almost universally improved. It is

interesting to note the error spikes that occur e.g., at 750 poses. These are attributable

to the distributed nature of the optimization; when an inter-agent pose constraint is

imposed, an error in one agent’s trajectory will affect the accuracy of the agent with

a shared pose, and the accuracy of each trajectory will incrementally improve in a

leap-frog fashion. Nevertheless, the errors even at the spikes are comparable to or

less than the errors without incorporating loop closures. Additionally, comparing

Fig. 5-21 and 5-22, it is apparent that the effect of adding loop closures dominates

the accuracy of the entire solution with all possible sensors incorporated.

It is informative to re-run a subset of the experiments above on a different DRPGO-

CSLAM dataset that results in a different baseline solution quality. Figure 5-23 gives
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Robot 0
Robot 1
Robot 2

Figure 5-20: Cumulative global RMSE of the 6-DOF estimated trajectories of the
three agents from the EuRoC MAV dataset, fusing VIO, altimeter, and inter-agent
range data using PGO.

Robot 0
Robot 1
Robot 2

Figure 5-21: Cumulative global RMSE of the 6-DOF estimated trajectories of the
three agents from the EuRoC MAV dataset, fusing VIO, altimeter, and intra-/inter-
agent loop closures using PGO.
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Robot 0
Robot 1
Robot 2

Figure 5-22: Cumulative global RMSE of the 6-DOF estimated trajectories of the
three agents from the EuRoC MAV dataset, fusing VIO, altimeter, intra-/inter-agent
loop closures, and inter-agent range data using PGO.

the RMSE for the state estimates of a four-agent DRPGO-CSLAM dataset with a

feature-starved environment. The degraded feature quality directly results in a heav-

ily degraded translation solution for all agents with a VIO-only estimation scheme.

With a lower-accuracy VIO baseline solution, the mixed results of incorporating

inter-agent range information become more pronounced. Figure 5-24 gives the RMSE

with VIO, altimeter, and range data only. Compared to the translation plots in Fig. 5-

23, it is apparent that the inter-agent range measurements cause the higher-accuracy

estimates to degrade as the lower-accuracy estimates improve, leading all agents’

accuracies to gravitate toward a common mean. This behavior is the result of the

agents’ relative accuracy improving, but with global drift in the overall multi-agent

trajectory estimate, as discussed in Section 4.3.

As a brute-force attempt to address the inconsistent accuracy improvements in

Fig. 5-24, the state estimates of Robot 2 are artificially replaced with the true global

pose estimate, and the resulting errors for the remaining agents are plotted in Fig. 5-

25. The improvement in accuracy for the remaining agents is stark, improving an
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Figure 5-23: Cumulative global RMSE of the 6-DOF estimated trajectories of the
four agents from a feature-starved environment dataset generated from AirSim. The
trajectory estimates come from VIO alone.

Figure 5-24: Cumulative global RMSE of the 6-DOF estimated trajectories of the
four agents from a feature-starved environment dataset generated from AirSim. The
trajectory estimates come from fusing altimeter and inter-agent range data with PGO.
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Figure 5-25: Cumulative global RMSE of the 6-DOF estimated trajectories of the
four agents from a feature-starved environment dataset generated from AirSim. The
trajectory estimates come from fusing altimeter and inter-agent range data with PGO.
The distinction from Fig. 5-24 is that in this case, Robot 2’s trajectory estimate is
automatically set to its true global estimate, thus anchoring the global consistency of
the rest of the trajectory estimates.

entire order of magnitude as would bee seen with loop closure measurement incor-

poration. These results corroborate the notion that for the global accuracy of a

swarm’s estimate to improve with inter-agent range measurements, at least one agent

in the communication graph must incorporate a separate source of information that

improves its own global accuracy directly.

5.2.2 DRPGO Simulation Tests

The presented results from the DRPGO-CSLAM datasets demonstrate with realistic

CSLAM sensor data that DRPGO requires a strategy for anchoring the global accu-

racy of the swarm’s collective trajectory estimate, which can be held together in a

relative sense with inter-agent range measurements. The experiments in this section

expand on those results, simulating evolving communication sub-graph topologies and

anchoring strategies. The data are collected from the DRPGO simulation environ-
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Figure 5-26: Cumulative global RMSE of the 6-DOF estimated trajectories of the
four agents from the DRPGO simulation experiments. In this trial, the agents share
no pose or range data with each other through the course of the flight (see Fig. 5-27).

ment described in Section 4.5.

Figure 5-26 presents the error plots for DRPGO in its full form (Algorithm 2),

but hampered by imposing no inter-agent communication at all over the course of

the flight. Figure 5-27 illustrates the corresponding communication sub-graphs. It

does this by coloring the error plots from Fig. 5-26 with a different color for each

sub-graph. Thus, the unique colors for each curve indicate that the swarm is totally

disconnected. In terms of the raw RMSE, it can be seen that with no inter-agent

range measurements, the overall error trend is increasing over time for all degrees of

freedom.

Figures 5-28 and 5-29 give the raw RMSE and communication sub-graph data,

respectively, for a scenario of DRPGO with medium connectivity. With medium

connectivity, non-trivial communication sub-graphs exist (Fig. 5-29), but are allowed

to evolve as agents move into and out of each others’ communication ranges. Each

new sub-graph results in a new anchor agent assignment. In Fig. 5-29, anchor agent

assignments are denoted by solid, thicker lines. In terms of raw RMSE, the increasing
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Figure 5-27: Cumulative global RMSE plot from Fig. 5-26, visualizing the communi-
cation graph connectivity. Distinct line colors correspond to distinct communication
graphs, and dotted/solid lines correspond to unanchored/anchored trajectory seg-
ments.

error trend of Fig. 5-26 is absent with full DRPGO, and overall error levels are

universally lower by an order of magnitude than in the communication-less case.

A close examination of Fig. 5-29 shows the importance of sub-graph anchoring;

as the anchor agent’s RMSE decreases with the addition of loop closures, the global

error of the rest of the sub-graph also decreases in response, despite the fact that only

range measurements are being shared. This denotes a strategy for global accuracy

without having to communicate the level of information needed for distributed data

association.

Results from experiments with the full DRPGO scheme–this time with full connectivity–

are also presented in the raw RMSE and communication sub-graph plots in Fig. 5-30

and 5-31. With full connectivity, the same communication sub-graph persists through-

out the entire flight, which means that there is a single assigned anchor agent over

the course of the experiment. Once again, the global translation error is observed to

be bounded thanks to the inter-agent range measurements, and although the overall
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Figure 5-28: Cumulative global RMSE of the 6-DOF estimated trajectories of the
four agents from the DRPGO simulation experiments. In this trial, the agents share
pose or range data only within their connected communication sub-graphs, which
evolve over the course of the flight (see Fig. 5-29).

Figure 5-29: Cumulative global RMSE plot from Fig. 5-28, visualizing the communi-
cation graph connectivity. Distinct line colors correspond to distinct communication
graphs, and dotted/solid lines correspond to unanchored/anchored trajectory seg-
ments.
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Figure 5-30: Cumulative global RMSE of the 6-DOF estimated trajectories of the
four agents from the DRPGO simulation experiments. In this trial, all agents share
necessary pose or range data with each other throughout the flight (see Fig. 5-31).

RMSE is higher than that of the medium-connectivity experiment, it is still consider-

ably lower than that of the communication-less experiment. The fact that the overall

RMSE is higher than with the medium-connectivity experiment is explained by the

smaller number of sub-graphs, which translates to less loop closures being added to

the pose graphs overall.

As a final illustrative experiment, the full-connectivity experiment is repeated,

but this time with no anchor agent assignment. The results are presented in Fig. 5-

32 (raw RMSE) and 5-33 (communication sub-graph). The resulting global errors

look similar to the case with no inter-agent communication at all, with unbounded

error growth in translation and greater error in the z-component of rotation. Even

with full connectivity, anchoring loop closure measurements are needed to prevent

the aggregate trajectory for all agents from drifting globally.

One immediate question that remains to be answered pertains to determining

exact accuracy expectations given reasonable operating conditions. In other words,

Monte Carlo testing over many different communication graph topology evolutions
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Figure 5-31: Cumulative global RMSE plot from Fig. 5-30, visualizing the communi-
cation graph connectivity. Distinct line colors correspond to distinct communication
graphs, and dotted/solid lines correspond to unanchored/anchored trajectory seg-
ments.

Figure 5-32: Cumulative global RMSE of the 6-DOF estimated trajectories of the
four agents from the DRPGO simulation experiments. In this trial, all agents share
necessary pose or range data with each other, but no agent ever is assigned to act as
an anchor (see Fig. 5-33).
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Figure 5-33: Cumulative global RMSE plot from Fig. 5-32, visualizing the communi-
cation graph connectivity. Distinct line colors correspond to distinct communication
graphs, and dotted/solid lines correspond to unanchored/anchored trajectory seg-
ments.

can give a more quantitative measure to the expected upper and lower global accu-

racy bounds, as well as how those bounds scale with the number of agents and sizes

of the communication sub-graphs. Nevertheless, the presented DRPGO results act

as a proof-of-concept to indicate that inter-agent range measurements, when coupled

with a strategy for intelligently and efficiently incorporating loop closures on a single-

agent basis, can reliably facilitate more globally accurate swarm trajectory estimates

with minimal inter-agent communication requirements. These characteristics are es-

sential for applications like radiological mapping, where the ability to explore larger

spaces in a time-sensitive manner while not simultaneously straining the inter-agent

communication network is essential.
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Chapter 6

Conclusion

6.1 Summary

This thesis presents two different UAS designed to accomplish accurate and reliable

sensing challenging real-world settings. For the air wake measurement system, this

is accomplished by tailoring classical techniques in control and estimation to the

specific idiosyncrasies of both tethered flight and the maritime environment. The use

of a tether in the air wake measurement system affords a measure of passive flight

stabilization which, when coupled with the presented control strategy, allows the

UAS to attain sufficient coverage to map both the predominantly turbulent and free

stream regions of the air wake profile. The relative state estimation algorithm, which

fuses measurements from a differential GPS as well as a vision-based pose estimation

scheme using active IR beacons, provides a centimeter-level-accuracy estimate of the

UAS state relative to the ship, even at large distances and in the midst of temporary

sensor dropouts.

The presented DRPGO formulation for swarms performing radiological mapping is

tailored to the well-documented constraints on inter-agent communication and flight

time that are inherent to multi-agent coverage problems. Simulation demonstra-

tions show that, given a strategy for allocating tasks pertaining to exploration ver-

sus exploitation, a UWB-augmented, distributed pose graph optimization system can

achieve similar global localization accuracies to full-fledged distributed CSLAM meth-
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ods at a fraction of the communication cost. These proof-of-concept results open the

door for further utilization of UWB-based ranging for increasing the robustness of

mapping with swarms and inexpensive sensor suites.

6.2 Future Work

The air wake measurement system demonstrations presented in this thesis validate

the approaches taken in estimation and control, particularly when subjected to real-

world disturbances and sensing conditions. With validated autonomy performance,

the system is ready to be deployed for in situ air wake measurements on a maritime

vessel to accomplish the ultimate goal of validating CFD-based air wake models for

improved maritime landing operations. The demonstrations related to DRPGO, by

comparison, require more thorough testing and demonstration on systems that are

not simply artificially constrained–particularly through moving beyond simulation

and into extensive hardware testing in actual UAS swarms. Varied and convincing

demonstrations of DRPGO’s ability to improve the global consistency and accuracy of

a swarm’s collective localization under real-world communication and computational

constraints is still needed. Once these demonstrations are accomplished in a labora-

tory environment, DRPGO can confidently be integrated into a distributed CSLAM

system for facilitating faster radiological mapping in time-sensitive and otherwise

constrained and challenging environments.
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