
A Comparison Study of Various Trajectory
Optimization Techniques for Multi-Agent Air

Hockey
Xiaoyi Cai

Aeronautics and Astronautics Dpt.
Massachusetts Institute of Technology

Cambridge, USA
xyc@mit.edu

Andrea Tagliabue
Aeronautics and Astronautics Dpt.

Massachusetts Institute of Technology
Cambridge, USA
atagliab@mit.edu

Andrew Torgesen
Aeronautics and Astronautics Dpt.

Massachusetts Institute of Technology
Cambridge, USA
torgesen@mit.edu

Abstract—A simulation environment implementing stochastic
dynamics and event-based collision detection is created to provide
a sandbox for comparing and showcasing the effectiveness of
several trajectory optimization techniques in facilitating team
performance in an adversarial game of multi-agent air hockey.
Among the techniques being compared or showcased are a family
of open-loop trajectory optimizations featuring linear, nonlinear,
and hybrid solvers. In addition to the open-loop strategies,
both decentralized and centralized model predictive control
(MPC) formulations are presented and tested in the air hockey
environment. The effect of utilizing control barrier functions
(CBFs) for centralized collision avoidance is also explored. In
comparing the performance of the various control schemes, a
regularized strategy is used for each team to avoid confounding
the effects of strategy choice and control method. Comparison
results suggest that there are inherent tradeoffs between scoring
ability and robust obstacle avoidance in dynamic, adversarial
environments. Additionally, control barrier functions provide a
promising convex method for ensuring obstacle avoidance from
a centralized planner.

I. SUPPLEMENTARY MATERIAL

All code used for this project can be found at
https://github.com/goromal/robo-game-sim. The repository
contains a directory called “videos” with select recordings
of individual tournament games. A video presentation of our
results is available https://youtu.be/3z3LBnkS10M.

II. INTRODUCTION

The control of underactuated systems is facilitated by a
wide variety of techniques ranging from dynamic program-
ming to ad hoc nonlinear controllers. In the special case
of linear underactuated systems, large state spaces can be
stabilized by the globally optimal, analytical LQR state space
controller that minimizes a quadratic cost function derived
from a combination of state and input error. However, when
continuous and discrete input and path constraints are imposed
on the control formulation, LQR is unable to take them into
account, running the risk of resulting in infeasible trajectories.
Thus, trajectory optimization transcription techniques must be
used in conjunction with mathematical program solvers to
obtain a context-specific optimal control strategy. When the

imposed constraints are continuous and linear, the solver can
exploit the convexity of the mathematical program and obtain
a globally optimal trajectory very quickly. The addition of
hybrid dynamics, such as those involving collisions, and non-
convex constraints necessitate the use of nonlinear and mixed-
integer solvers that produce only locally optimal solutions after
longer solver runtimes.

Considering the inherent tradeoffs between runtime, opti-
mality, and constraint satisfaction that exists between various
trajectory optimization techniques, the overarching goal of
this project was to explore those tradeoffs in a dynamic
environment with non-convex constraints, multiple agents, and
a control objective pertaining to an underactuated system
with hybrid dynamics. A game of multi-agent air hockey
seemed like a natural fit to provide a sandbox for testing
these concepts. The goal, or control objective, of the game
is to maneuver the puck into the opponent’s goal as many
times as possible while preventing the converse to whatever
extent possible. Because only the agents on each team are
controllable through input commands, the agent-puck system
is inherently both an underactuated (autonomous) system and a
hybrid system that evolves through phases defined by elastic
collisions. Path constraints imposed by the arena limits and
saturation on the allowable agent inputs further contributes to
the underactuated classification of the multi-agent system.

Besides satisfying the various dynamic and constraint char-
acteristics necessary for evaluating different trajectory opti-
mization formulations, the adversarial nature of the air hockey
game provides a natural way to directly compare techniques
with easy-to-understand performance indicators. Further, the
continuous dynamics are linear and simple enough to not
render the prospect of large-scale testing and comparison
intractable.

The structure of this project report is as follows: Section
III discusses related work that inspired or assisted the im-
plementation of the algorithms in this project. Sections V-VII
detail the methods used for the simulation environment as well
as trajectory optimization and obstacle avoidance techniques.
Results are discussed in Section VIII, and Section IX gives

https://github.com/goromal/robo-game-sim
https://youtu.be/3z3LBnkS10M

the conclusion with some final insights.

III. RELATED WORK

The original impetus for this project came from investi-
gating the RoboCup international competition–particularly the
model-based winning strategy of the 2000 Cornell team, as
outlined in [1]. Due to the complex nature of the game, it is
natural to decompose the coordination of the robots into high-
level strategic planning and low-level motion planning that
enables the former. In [1], the control system is decomposed
into three parts, namely the Strategy module, the Trajectory
Generation module, and the Local Control module. The Strat-
egy module is a finite state automaton that decides the goals
that robots should carry out during the game. These goals
are fulfilled by specific plays, such as Offense, Defense or
Pass play. The Trajectory Generation module takes the desired
final position, velocity and time to target information from the
Strategy module to generate feasible trajectories that respect
safety, time requirement and energy constraint. At the lowest
level, the these desired wheel velocities are achieved by the
he Local Control module through local feedback loops. The
baseline methods used in this project are most closely related
to this formulation.

MPC [2] (and its distributed variant DMPC [3]) is a
common framework employed for for dynamic coordination
of multiple agents. The work in [4], for example, uses DMPC
coordinate 25 UAVs performing a point-to-point transition
while avoiding each other, while [5] uses a non-linear MPC
for collision avoidance between two aerial vehicles. Hybrid
variants such as the one outlined in [6] have shown to be
promising for tasks such as controlling an underactuated puck
through collisions or utilizing arena walls.

Works such as [7] have made use of control barrier func-
tions (CBF) [8] to minimally perturb independently derived
trajectories for centralized obstacle avoidance in a multi-agent
setting with a convex optimization problem. This approach is
attractive due to its convexity and ability to guarantee obstacle
avoidance. However, there are certainly questions about how
such minimal perturbations to individual agent trajectories
serve to derail the original trajectory path objectives in a
dynamic environment.

Methods for event-based collision detection are outlined
in large-scale simulation environment architectures like [9],
where it is necessary to enforce multibody and environmental
collisions in an efficient and methodical manner. This project
aims to implement similar collision detection algorithms to
maximize the fidelity of the air hockey simulation, which
depends largely on collision dynamics to achieve control and
game objectives.

IV. NOTATIONS

Several parameters common to all control schemes include
the desired final state xdes, arena height and width bounds
pmax = [h,w], pmin = −pmax, and input saturation limit
umax,umin. We denote the discrete time-step with k, the num-
ber of time-steps with N . Puck and player have, respectively,

t = 20.000000 s

Team A: 0 / 4 Team B: 0 / 4

Fig. 1: Multi-agent air hockey simulation environment. The
geometry of the puck, the agents, the goals, and the arena is
depicted to scale. Each agent is governed by its own set of
linear dynamics, and event-based collision detection enforces
elastic collisions between agents, other agents, and the walls
of the arena.

Symbol Meaning Domain
xi Position and velocity of player i R4

xpuck Position and velocity of puck R4

pi Position of player i R2

vi Velocity of player i R2

ppuck Position of puck R2

vpuck Velocity of puck R2

τpuck Time constant of puck R
τplayer Time constant of player R

r Radius of the puck R
R Radius of a player R
N Number of time-steps N

mplayer Mass of player i R
mpuck Mass of the puck R

TABLE I: Symbols used for this work

radius r and R, and mass mpuck and mplayer, and a time-
constant of τplayer and τpuck. We denote all the vectors in bold
and the matrices in capital. For convenience, the notation is
summarized in Table I. Other notations are introduced later
when necessary.

V. SIMULATION ENVIRONMENT

To provide a self-contained interface for enforcing the
continuous dynamics, collisions, and rules associated with
the multi-agent air hockey game, a simulation environment
was written in C++ with Python bindings. Fig. 1 depicts
the geometry of the simulation environment. The simulator
provides an interface where agent inputs can be given by an
external program and the simulator returns the evolved state
of every player and puck after a time step of ∆t.

The version of air hockey enforced by the simulator differs
from a traditional air hockey game in that there is significantly
more damping, the effective damping coefficient is allowed
to be different for the puck than for the players, and random
noise is added to the input for each player. The linear dynamics
governing player movement can be expressed as:

ẋ =


0 0 1 0
0 0 0 1
0 0 − 1

τplayer
0

0 0 0 − 1
τplayer

x+


0 0
0 0
1

τplayer
0

0 1
τplayer

u+ν (1)

where x =
[
px py vx vy

]T
consists the position and

velocity of the player in the plane, τplayer is a player-specific
parameter related to rise time, ν ∼ N (0,Σ) ∈ R4 is Gaussian
noise acting on each velocity component, and u =

[
ux uy

]T
can be conceptualized either as a desired input velocity to
motors with first-order dynamics or as input forces to a
damped mechanical system. Similarly, the dynamics for the
puck (which has no internal input) are:

ẋ =


0 0 1 0
0 0 0 1
0 0 − 1

τpuck
0

0 0 0 − 1
τpuck

x (2)

Equations (1) and (2) are integrated forward in time using
fourth-order Runge-Kutta integration. The scoring rules are
identical to normal air hockey, and the puck’s position is
reset to the arena origin each time it enters a goal. Inter-
body collisions and collisions with the arena walls are enforced
using a version of event-based collision detection, which aims
to predict when collisions will occur and preemptively handle
them rather than simply check for collisions that have already
occurred and backtrack to handle them after the fact.

Though the governing dynamics of each agent in the game
are linear, the resulting trajectories are nonlinear in shape,
making the prospect of analytically solving for future collision
times non-trivial. Thus, at each time step, the time interval is
divided further into a dense grid of predicted states for each
moving body. Each node in the grid is populated using Runge-
Kutta integration, and linear interpolation is used between
each grid point to allow for a pseudo-analytical calculation
of the future collision times. A priority queue is then used
to handle each collision in the order of imminence, and new
imminent collisions are added to the queue as they arise. The
full collision detection and handling strategy is outlined by
Algorithm 1.

For collisions between players, the simulator logs a “dam-
age coefficient” proportional to the squared induced velocity
change imposed by one player on the other. A matrix of
these damage coefficients is maintained throughout the game,
providing a measure of how well each player is able to avoid
colliding with each other player in the arena. At the end
of each game, the Python interface to the C++ simulator
allows the user to log the results of each game for subsequent
visualization and analysis before resetting the simulator for
another game. The flexible interface for the simulator allows
for the quick development and testing of numerous control
strategies using Drake’s Python interface classes.

Algorithm 1 Event-Based Collision Handling

Input: pi(0), vi(0), ui Initial position, velocity, input for each
body i

Output: pi(∆t), vi(∆t) Resulting position/velocity at end of
simulation window

1: Initialize tgrid = {tk} with 50 time points between t(0)
and t(0) + ∆t

2: Initialize xgrid,i = {xk,i} with each xk,i calculated from
integrating Equation STATE Initialize kbase = 0 1 or 2
with RK4

3: Initialize P = ∅ Priority queue for sorting collisions by
calculated time

4: do
5: if P 6= ∅ then
6: (tp, p, i1, i2) = remove top time-stamped collision

element involving i1, i2 (i2 only if multi-body collision)
from P

7: Simulate collision p and propagate effects to xk,i1
and xk,i2 for all k > tp

8: Set kbase to greatest k < tp
9: C = {i1, i2}

10: else
11: C = {i} for all i
12: end if
13: for c in C do
14: for xk,c ∈ xgrid,c, k ≥ kbase do
15: Use inter-grid linear interpolation to find pseudo-

analytical time to collision for each possible collision
involving c

16: Add time-stamped collision to P if time to colli-
sion < ∆t

17: end for
18: end for
19: while P 6= ∅

VI. TRAJECTORY OPTIMIZATION METHODS

To avoid confounding the comparison between different
control strategies, each team follows an identical, relatively
simple strategy, where the current play is either an offensive or
defensive play and each team has a player primarily concerned
with offense and defense. The team-level strategy can be
described by the logic trees depicted in Fig. 2.

The end result of the strategy is that at each time step, each
player is given a desired state xdes to arrive at as quickly
as possible, and the following sections detail the various
implemented methods used to control each player to achieve
an often constantly evolving xdes in a dynamic environment
with arena constraints and moving obstacles.

A. Baseline Program

The baseline approach is loosely inspired by early work on
the Robot-cup challenge [1], which served as a benchmark and
the starting point for the more advanced algorithms presented
in the next sections. In the baseline strategy, each player

Fig. 2: The common logic dictating the strategy of each team.

has three actions available: kick, defend, and defensive kick.
Direct Collocation for the system in (1) is used to compute
minimum trajectory for these actions, where the terminal time
step is denoted as N . The baseline strategy is open-loop,
i.e., new trajectories are planned only after full execution.
During trajectory planning, the puck is assumed to be static
for simplicity.

a) Kick action: The player generates a trajectory from its
current position to hit the puck towards the goal. We achieve
a directional kicking at the final time step N by specifying
the terminal velocity for player i as

vdes,i = vi[N] = vkick
pgoal − ppuck

||pgoal − ppuck||

where vkick > 0 determines the aggressiveness of the kick.
The desired final position to kick is the position of the puck
shifted along the kicking direction by the sum of the radius
of the puck and of the player

pdes,i = pi[N] = ppuck − (r +R)
vi[N]

||vi[N]||
(3)

Further, at all knot points k of the planned trajectory, the player
has to remain in the arena (defined by pmin,pmax ∈ R2)

pmin ≤ pi[k] ≤ pmax (4)

and to respect the actuation limits

− umin ≤ ui[k] ≤ umax. (5)

To achieve minimum-time behavior, we define the cost func-
tion to be

Jkick,i = T + (xdes,i − xi[N])TQ(xdes,i − xi[N]) (6)

where Q ∈ R4×4 is a positive definite matrix.
b) Defend action: The player i tries to stay between the

home goal and the puck by planning a minimum trajectory
that goes to

pdes,i = phome-goal + (ppuck[k]− phome-goal)/2.

c) Defensive kick action: The formulation is similar to
the kick action, but the player i tries to kick the puck in a
direction towards the adversary’s goal, but along a trajectory
that does not immediately intersect any obstacle (any other
player). We set the desired final velocity to be

vdes,i =

[
−sign(pgoal,x)

sign(popponent(i,1),y + popponent(i,2),y)

]
(7)

where −sign(pgoal,x) denotes the x-direction of the adver-
sary’s, while popponent(i,1),y and popponent(i,2),y denote the y-
coordinated of the two opponents of player i. while the final
position is obtained according to Equation (3).

d) Other actions and what did not work: During the
development phase of the baseline strategy we tested multiple
different approaches which eventually did not make it in the
final version of the strategy. These approaches included a
fixed-time kicking mode, and a mixed-integer formulation for
avoidance of the opponents. While the first formulation did not
provide to be very useful (since there is little gain in moving at
a non-maximum velocity and acceleration), the second strategy
did not prove to be very practical, since the Branch-and-Bound
solver usually took too long to complete (more than 20 minutes
for a single iteration, using 80 integers variables).

B. Decentralized MPC

The decentralized model predictive control (DMPC) control
strategy has each individual agent formulating and solving
its own constrained nonlinear optimization program at each
time step. The nonlinear program is built on top of a direct
collocation scheme for (1) with a fixed number of time steps
N but variable time step length. The cost function for player
i is the same as (6) which encourages the robot to move to
desired terminal state as quickly as possible.

Similar to the baseline, the player has to remain in the arena
and respect the actuation limits by enforcing the constraints (4)
and (5). In addition, collision avoidance constraint

(pi[k]− oj)T (pi[k]− oj) ≥ 4R2 (8)

for all knot points k and obstacles oj . The program is
subsequently solved by SNOPT, and only the first time step of
the input solution is extracted and returned to the simulator.
The entirety of the state and input solutions xi[k],ui[k] is

stored to be used as the initial guess for the next optimization,
which greatly decreases the runtime of subsequent solutions.

The practice of only executing ui[0] after each solution,
a characteristic of MPC methods, gives DMPC a feedback
control quality that provides adaptability in the dynamic air
hockey environment.

C. Centralized Non-Linear MPC

The centralized non-linear MPC strategy is based on the
strategy proposed in Part VI-B, with the difference that the
optimization problem is formulated and solved jointly for the
two players. This implies that the state of program contains
the position of both the players p1 and p2. Thanks to this
formulation, we can enforce that the trajectories generated by
the two players belonging to the same team should not be
in collision with each other. Reciprocal collision avoidance is
achieved by introducing the following quadratic constraint

(p1[k]− p2[k])T (p1[k]− p2[k]) ≥ 4R2 (9)

for every knot point k. The additional constraint does not
fundamentally change the formulation of the problem and, as
for the DMPC case, the non-linear program is solved using
SNOPT.

D. MIQP-like Non-Linear Program for Centralized Planning

In this formulation we try to plan jointly a dynamic trajec-
tory for the puck and a player, without having to pre-specify
the impact time, position or velocity of the player with the
puck. The objective of this formulation is to evaluate a more
“holistic” approach to planning and trajectory generation, by
letting the solver figure out every aspect of the sequence of
actions that the player has to follow to score. The approach,
unfortunately, did not work as expected and is not included in
our results, but its formulation is here presented for complete-
ness.

As an initial step, we focus our formulation for the joint
planning of the trajectory of one player and the puck. We set
the cost function to simply represent the high-level objective
of having the puck in the goal (by minimizing its distance
from the goal)

Jjoint =

N∑
k=1

(pgoal[k]−ppuck[k])TQ1(pgoal[k]−ppuck[k]) (10)

and we introduce an additional small penalty on the distance
between the agent and the puck

Joptional
joint =

N∑
k=1

(ppuck − pi[k])TQ2(ppuck − pi[k]) (11)

to aid the solver in finding a feasible solution. Q1, Q2 ∈
R2×2 are positive definite matrices, tuning parameter of the
approach.

Following [10] we choose a mixed-integer-like approach to
the problem, since it allows the flexibility to let the solver
chose impact time - or no impact at all - which can be
convenient in the case we are trying to control multiple agents

(ideally the solver will even choose which agent should hit the
puck). To this end, we introduce two new variables. First, we
define a binary variable tkick,i[k] ∈ {0, 1} for k = 1, . . . , N ,
which is 1 if player i is in contact with the puck at time k, and
0 otherwise. Second, we introduce the contact force between
the puck and player i as λi[k] ∈ R2, with k = 1, . . . , N . We
use the guard/reset map approach to switch in between the two
possible modes for player i: in contact with the puck (λi 6= 0)
or not (λi = 0). The guard corresponds to the squared distance
between player and puck:

Φ[k] = (pi[k]−ppuck[k])T (p1[k]−ppuck[k])− (r+R)2 (12)

which triggers the change between contact/not contact mode of
tkick,i[k] via a constrain formulated using the big-M notation:

Φ[k] ≤M(1− tkick,i[k]) (13)

where M ∈ R is a large, positive constant. The value of the
contact force λi[k] is enforced to be 0 when player and puck
are not in contact via the big-M notation, according to the
constraint

−M(1− tkick,i[k]) ≤ λi[k] ≤M(1− tkick,i[k]) (14)

for every k = 1, . . . , N . We assume the collision between puck
and player to be perfectly elastic. By applying the principle
of conservation of the kinetic energy, we obtain the reset map

[x+
i [k],x+

puck[k]] = ∆(x−i [k],x−puck[k]), (15)

defined as 
p+i [k] = p−i [k],

v+i [k] = v−i [k]

p+puck[k] = p−puck[k],

v+puck[k] = v−i [k]

where, for simplicity, we have assumed that the mass of the
player >> than the mass of the puck so that, after the impact,
the puck will acquire the same velocity as the player, while
the velocity of the player will not be affected. The reset map
is enforced at impact time via the big-M notation

−M(1− tkick,i[k]) ≤∆(x−i ,x
−
puck) ≤M(1− tkick,i[k]) (16)

We apply the contact force lambda as an additional accelera-
tion term to the dynamics of the two bodies by introducing a
new input in their respective discrete-time state space represen-
tation (discretized using forward Euler with the fixed sampling
time h), obtaining, for player i

xi[k + 1] = Aixi[k] +Biui[k] +Eiλi[k] (17)

Ei =


0 0
0 0

h/mplayer 0
0 h/mplayer

 (18)

and, for the puck

xpuck[k + 1] = Apuckx[k]−Epuckλi[k] (19)

Epuck =


0 0
0 0

h/mpuck 0
0 h/mpuck

 (20)

where the definition of Ai, Bi, Apuck can be obtained by
discretizing equation eq. (1) and eq. (2). We observe that
the problem here formulated is a Mixed-Integer Quadratic
Program (quadratic due to the presence of the constraint Φ
on the distance between puck and player). We solve it using
SNOP, defining tkick,i[k] as a continuous variable having only
values 0 or 1, thanks to the additional smooth constraint

tkick,i[k](1− tkick,i[k]) = 0 (21)

As before, we additionally limit the maximum control input
for each player using the constraint defined in (5), and we
constraint the player and the puck to be inside the arena,
following what done in (4).

E. Bounce Kick

Inspired by the bouncing basketball example in the text-
book, we have also devised a special trick for a player to score
points by bouncing the puck off of the arena wall towards
the opponents’ goal. To simplify the planning process, we
have taken a decoupled approach, where the initial velocity
of the puck is first calculated, and then the player will plan
a timed trajectory that enforces this desired velocity for the
puck through an elastic collision constraint. In the following
discussion, we assume that the puck is initially stationary,
collisions are elastic, and τpuck is large enough such that the
puck can slide for longer distance.

�1<latexit sha1_base64="VsyS0WjP7d5+Yt0ZBkPIi9r4THQ=">AAAB/nicbVDNS8MwHE3n15xfVfHkJTgET6Odgh4HetDbBPcBaylpmm5haVKSVBhl4L/ixYMiXv07vPnfmG496OaDkMd7vx95eWHKqNKO821VVlbX1jeqm7Wt7Z3dPXv/oKtEJjHpYMGE7IdIEUY56WiqGemnkqAkZKQXjq8Lv/dIpKKCP+hJSvwEDTmNKUbaSIF95IWCRWqSmCv3bgjTaBq4gV13Gs4McJm4JamDEu3A/vIigbOEcI0ZUmrgOqn2cyQ1xYxMa16mSIrwGA3JwFCOEqL8fBZ/Ck+NEsFYSHO4hjP190aOElUkNJMJ0iO16BXif94g0/GVn1OeZppwPH8ozhjUAhZdwIhKgjWbGIKwpCYrxCMkEdamsZopwV388jLpNhvueaN5f1Fv3ZV1VMExOAFnwAWXoAVuQRt0AAY5eAav4M16sl6sd+tjPlqxyp1D8AfW5w+Zb5Xp</latexit>

�2<latexit sha1_base64="W0+iu1nIm7O6dz6ou/feipt/Bs4=">AAAB/nicbVDNS8MwHE3n15xfVfHkJTgET6Odgh4HetDbBPcBaylpmm5haVKSVBhl4L/ixYMiXv07vPnfmG496OaDkMd7vx95eWHKqNKO821VVlbX1jeqm7Wt7Z3dPXv/oKtEJjHpYMGE7IdIEUY56WiqGemnkqAkZKQXjq8Lv/dIpKKCP+hJSvwEDTmNKUbaSIF95IWCRWqSmCv3bgjTaBo0A7vuNJwZ4DJxS1IHJdqB/eVFAmcJ4RozpNTAdVLt50hqihmZ1rxMkRThMRqSgaEcJUT5+Sz+FJ4aJYKxkOZwDWfq740cJapIaCYTpEdq0SvE/7xBpuMrP6c8zTTheP5QnDGoBSy6gBGVBGs2MQRhSU1WiEdIIqxNYzVTgrv45WXSbTbc80bz/qLeuivrqIJjcALOgAsuQQvcgjboAAxy8AxewZv1ZL1Y79bHfLRilTuH4A+szx+a85Xq</latexit>

x�
i

<latexit sha1_base64="pHDg1cSVKW4OLZa/YOS3NNsiXyM=">AAAB+3icbVDNS8MwHE3n15xfdR69BIfgxdFOQY8DL3qb4D5gqyVNsy0sTUqSykbpv+LFgyJe/Ue8+d+Ybj3o5oOQx3u/H3l5Qcyo0o7zbZXW1jc2t8rblZ3dvf0D+7DaUSKRmLSxYEL2AqQIo5y0NdWM9GJJUBQw0g0mN7nffSJSUcEf9CwmXoRGnA4pRtpIvl0dBIKFahaZK51mPn089+2aU3fmgKvELUgNFGj59tcgFDiJCNeYIaX6rhNrL0VSU8xIVhkkisQIT9CI9A3lKCLKS+fZM3hqlBAOhTSHazhXf2+kKFJ5PDMZIT1Wy14u/uf1Ez289lLK40QTjhcPDRMGtYB5ETCkkmDNZoYgLKnJCvEYSYS1qatiSnCXv7xKOo26e1Fv3F/WmndFHWVwDE7AGXDBFWiCW9ACbYDBFDyDV/BmZdaL9W59LEZLVrFzBP7A+vwBfx2UwA==</latexit>

x+
i

<latexit sha1_base64="ruHY5hTEbyhoP7oOCYZlXV1r9+A=">AAAB+3icbVDNS8MwHE3n15xfdR69BIcgCKOdgh4HXvQ2wX3AVkuaZltYmpQklY3Sf8WLB0W8+o94878x3XrQzQchj/d+P/LygphRpR3n2yqtrW9sbpW3Kzu7e/sH9mG1o0QiMWljwYTsBUgRRjlpa6oZ6cWSoChgpBtMbnK/+0SkooI/6FlMvAiNOB1SjLSRfLs6CAQL1SwyVzrNfPp47ts1p+7MAVeJW5AaKNDy7a9BKHASEa4xQ0r1XSfWXoqkppiRrDJIFIkRnqAR6RvKUUSUl86zZ/DUKCEcCmkO13Cu/t5IUaTyeGYyQnqslr1c/M/rJ3p47aWUx4kmHC8eGiYMagHzImBIJcGazQxBWFKTFeIxkghrU1fFlOAuf3mVdBp196LeuL+sNe+KOsrgGJyAM+CCK9AEt6AF2gCDKXgGr+DNyqwX6936WIyWrGLnCPyB9fkDfBWUvg==</latexit>

x+
puck

<latexit sha1_base64="EHyLnfMCOQWy4sy0IKgHIi6SVA4=">AAACBXicbVDLSsNAFJ3UV62vqEtdBIsgCCWpgi4LbnRXwT6giWEymbRDJw9mbqQlZOPGX3HjQhG3/oM7/8ZJ24W2HhjmcM693HuPl3AmwTS/tdLS8srqWnm9srG5tb2j7+61ZZwKQlsk5rHoelhSziLaAgacdhNBcehx2vGGV4XfeaBCsji6g3FCnRD3IxYwgkFJrn5oezH35ThUXzbKXRvoCLIkJcP8/tTVq2bNnMBYJNaMVNEMTVf/sv2YpCGNgHAsZc8yE3AyLIARTvOKnUqaYDLEfdpTNMIhlU42uSI3jpXiG0Es1IvAmKi/OzIcymJRVRliGMh5rxD/83opBJdOxqIkBRqR6aAg5QbERhGJ4TNBCfCxIpgIpnY1yAALTEAFV1EhWPMnL5J2vWad1eq359XGzSyOMjpAR+gEWegCNdA1aqIWIugRPaNX9KY9aS/au/YxLS1ps5599Afa5w/2ipmF</latexit>

x�
puck

<latexit sha1_base64="qcLEn0F/3bdyCfPK4P8c59JUsNc=">AAACBXicbVDLSsNAFJ3UV62vqEtdBIvgxpJUQZcFN7qrYB/QxDCZTNqhkwczN9ISsnHjr7hxoYhb/8Gdf+Ok7UJbDwxzOOde7r3HSziTYJrfWmlpeWV1rbxe2djc2t7Rd/faMk4FoS0S81h0PSwpZxFtAQNOu4mgOPQ47XjDq8LvPFAhWRzdwTihToj7EQsYwaAkVz+0vZj7chyqLxvlrg10BFmSkmF+f+rqVbNmTmAsEmtGqmiGpqt/2X5M0pBGQDiWsmeZCTgZFsAIp3nFTiVNMBniPu0pGuGQSiebXJEbx0rxjSAW6kVgTNTfHRkOZbGoqgwxDOS8V4j/eb0UgksnY1GSAo3IdFCQcgNio4jE8JmgBPhYEUwEU7saZIAFJqCCq6gQrPmTF0m7XrPOavXb82rjZhZHGR2gI3SCLHSBGugaNVELEfSIntEretOetBftXfuYlpa0Wc8++gPt8wf5kpmH</latexit>

h1<latexit sha1_base64="TQzTJgBW85eRwIhlsg1ScFDmhyc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF71VtB/QhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfjm5nffkKleSwfzSRBP6JDyUPOqLHSw6jv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14bWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqt5FtXZ/Wanf5XEU4QRO4Rw8uII63EIDmsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8wf2qo2b</latexit>

h2<latexit sha1_base64="Qjhz+jLKIB9F3gN693T6Qxigo+M=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF71VtB/QhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfjm5nffkKleSwfzSRBP6JDyUPOqLHSw6hf65crbtWdg6wSLycVyNHol796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwms/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVdKqVb2Lau3+slK/y+Mowgmcwjl4cAV1uIUGNIHBEJ7hFd4c4bw4787HorXg5DPH8AfO5w/4Lo2c</latexit>

h3
<latexit sha1_base64="sxoVqgH3HDuc/A6yVoBddlCTKQs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0laQY8FL3qraGuhDWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ+BiMr2f+4xMqzWP5YCYJ+hEdSh5yRo2V7kf9er9ccavuHGSVeDmpQI5mv/zVG8QsjVAaJqjWXc9NjJ9RZTgTOC31Uo0JZWM6xK6lkkao/Wx+6pScWWVAwljZkobM1d8TGY20nkSB7YyoGellbyb+53VTE175GZdJalCyxaIwFcTEZPY3GXCFzIiJJZQpbm8lbEQVZcamU7IheMsvr5J2rerVq7W7i0rjNo+jCCdwCufgwSU04Aaa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz/5so2d</latexit>

x�
puck

<latexit sha1_base64="qcLEn0F/3bdyCfPK4P8c59JUsNc=">AAACBXicbVDLSsNAFJ3UV62vqEtdBIvgxpJUQZcFN7qrYB/QxDCZTNqhkwczN9ISsnHjr7hxoYhb/8Gdf+Ok7UJbDwxzOOde7r3HSziTYJrfWmlpeWV1rbxe2djc2t7Rd/faMk4FoS0S81h0PSwpZxFtAQNOu4mgOPQ47XjDq8LvPFAhWRzdwTihToj7EQsYwaAkVz+0vZj7chyqLxvlrg10BFmSkmF+f+rqVbNmTmAsEmtGqmiGpqt/2X5M0pBGQDiWsmeZCTgZFsAIp3nFTiVNMBniPu0pGuGQSiebXJEbx0rxjSAW6kVgTNTfHRkOZbGoqgwxDOS8V4j/eb0UgksnY1GSAo3IdFCQcgNio4jE8JmgBPhYEUwEU7saZIAFJqCCq6gQrPmTF0m7XrPOavXb82rjZhZHGR2gI3SCLHSBGugaNVELEfSIntEretOetBftXfuYlpa0Wc8++gPt8wf5kpmH</latexit>

x+
puck

<latexit sha1_base64="EHyLnfMCOQWy4sy0IKgHIi6SVA4=">AAACBXicbVDLSsNAFJ3UV62vqEtdBIsgCCWpgi4LbnRXwT6giWEymbRDJw9mbqQlZOPGX3HjQhG3/oM7/8ZJ24W2HhjmcM693HuPl3AmwTS/tdLS8srqWnm9srG5tb2j7+61ZZwKQlsk5rHoelhSziLaAgacdhNBcehx2vGGV4XfeaBCsji6g3FCnRD3IxYwgkFJrn5oezH35ThUXzbKXRvoCLIkJcP8/tTVq2bNnMBYJNaMVNEMTVf/sv2YpCGNgHAsZc8yE3AyLIARTvOKnUqaYDLEfdpTNMIhlU42uSI3jpXiG0Es1IvAmKi/OzIcymJRVRliGMh5rxD/83opBJdOxqIkBRqR6aAg5QbERhGJ4TNBCfCxIpgIpnY1yAALTEAFV1EhWPMnL5J2vWad1eq359XGzSyOMjpAR+gEWegCNdA1aqIWIugRPaNX9KY9aS/au/YxLS1ps5599Afa5w/2ipmF</latexit>

0
<latexit sha1_base64="rsPGDo38dCUrLsAt/ftnosrChUA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptsvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6F9Va87JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPemeMuA==</latexit>

time
<latexit sha1_base64="SKpXBuOIfxRbsxe0Ut2k9pP41fk=">AAAB7HicbVDLSsNAFL2pr1pfVZduBovgqiR1ocuCG91VsA9oQ5lMb9qhk0mYmQgl9BvcuFDErR/kzr9x0mahrQcGDufcw9x7gkRwbVz32yltbG5t75R3K3v7B4dH1eOTjo5TxbDNYhGrXkA1Ci6xbbgR2EsU0igQ2A2mt7nffUKleSwfzSxBP6JjyUPOqLGSTURYGVZrbt1dgKwTryA1KNAaVr8Go5ilEUrDBNW677mJ8TOqDGcC55VBqjGhbErH2LdU0gi1ny2WnZMLq4xIGCv7pCEL9Xcio5HWsyiwkxE1E73q5eJ/Xj814Y2fcZmkBiVbfhSmgpiY5JeTEVfIjJhZQpnidlfCJlRRZmw/eQne6snrpNOoe1f1xkOj1rwv6ijDGZzDJXhwDU24gxa0gQGHZ3iFN0c6L86787EcLTlF5hT+wPn8AWeZjm4=</latexit>

Fig. 3: Illustration of the bounce kick trajectory planning,
with reset maps, player and puck states, and the time periods
between reset maps.

The entire maneuver is separated into three time periods,
as visualized in Fig. 3, where [0, h1] (provided by the user)
is when the player moves to hit the puck, [h1, h1 + h2] is
when the puck moves towards the designated wall, and [h1 +
h2, h1 + h2 + h3] is when the puck bounces off of the wall
and reaches the goal. As a result, we define two reset maps

∆1 and ∆2. The first reset map captures the elastic collisions
between the player and the puck, where

[x+
i ,x

+
puck] = ∆1(x−i ,x

−
puck), (22)

such that

p+i = p−i ,

v+i = v−i −
2mpuck

mplayer+mpuck

〈v−
i −v

−
puck,p

−
i −p

−
puck〉

‖p−
i −p

−
puck‖2

(p−i − p
−
puck),

p+puck = p−puck,

v+puck = v−puck −
2mi

mpuck+mplayer

〈v−
puck−v

−
i ,p

−
puck−p

−
i 〉

‖p−
puck−p

−
i ‖2

(p−puck − p
−
i).

The second reset map is required for the puck and upper or
lower wall collision, which has the form:

x+
puck = ∆2(x−puck) = [p−x,puck, p

−
y,puck, v

−
x,puck,−v

−
y,puck]. (23)

Note that the reset maps (22) and (23) are only activated when
the player and the puck, or the puck and the wall are in contact.

Next, we notice that the state evolution of the puck can be
solved in closed form after colliding with the player. During
[h1, h2] and [h2, h3], we can integrate the dynamics of the
puck and get:

ppuck(t0 + h) = ppuck(t0) +

(
1− exp

(
−h
τpuck

))
τpuckvpuck(t0),

vpuck(t0 + h) = vpuck(t0) exp

(
−h
τpuck

)
,

(24)
where t0 is either h1 or h1 + h2.

With the reset maps and the closed solutions for the puck
state, we now show the strategy on a high level.
• Puck bouncing off of wall: The decision variables are
h2, h3 and the initial velocity of the puck vinit such that
the puck can hit the wall after h2 seconds and enters
the goal after another h3 seconds. These variables can be
solved by formulating the following through Drake:

min
h2,h3,vinit

0

s.t. t = h1 : initial condition of the puck,
t = h1 + h2 : puck is at the designated wall,

based on the closed form solution (24),
t = h1 + h2 : reset map in (23),
t = h1 + h2 + h3 : the puck is in the goal

based on the closed form solution (24),
h2 + h3 ≤ designated time.

(25)
• Player hits the puck: Given the desired initial veloc-

ity for the puck vinit, solving for a trajectory for the
player during time [0, h1] becomes easy. Through a direct
transcription program that encodes the dynamics of the
player, we want to solve for control inputs that drive the
player to hit the puck at terminal time h1 (user specified),
while enforcing the desired initial velocity for the puck
vinit through the reset map in (22).

Fig. 4: Relative position and velocity between agent i and j,
and the normal component ∆v̂ that contributes to the collision
of two agents. Image source: [11].

The decoupled approach taken to achieve bounce kick works
well, but the optimization framework in Drake can afford
jointly solving for the trajectories for the player and the puck,
by encoding the problem as a mixed integer program.

VII. CENTRALIZED COLLISION AVOIDANCE

Control Barrier Functions (CBFs) [8] are Lyapunov-like
functions that can be used to ensure safety of dynamical
systems, which can be framed as the forward invariance
property of a subset of the state space, i.e., if a system starts in
the safe set, it remains in the safe set for all future time. Prior
works have applied CBFs for systems with single integrator [7]
or double integrator dynamics [11], but not for the damped
double integrator dynamics considered in our report.

Due to the limited space, the definition for CBF and the
theorem that provide guarantees for the forward invariance
of safe sets are included in Appendix A. Next, we derive the
barrier function for our problem and formulate an optimization
problem that minimally changes the nominal control inputs of
robots in order to guarantee collision avoidance.

A. Problem Formulation

In this section, we formulate control barrier functions and
corresponding constraints that are used to guarantee inter-robot
collision avoidance in the air hockey scenario. Following the
notations in [11], we let M = {1, 2, . . . ,M} be the set of M
robots. Rewriting the each player’s dynamics (1) in a more
compact form, we get[

ṗi
v̇i

]
=

[
0 I
0 −1

τplayer
I

] [
pi
vi

]
+

[
0
1

τplayer
I

]
ui, ∀i ∈M

where I is an identity matrix, pi, vi ∈ R2 are the planar
position and velocity of the i-th robot, and ui ∈ R2 is the
corresponding control input. As shown in Fig. 4, we denote
relative position and velocity between robots i and j as

∆pij = pi − pj and ∆vij = vi − vj ,

as well as the normal component of the relative velocity as

∆v̄ =
∆pTij
‖∆pij‖

∆vij ∈ R,

which changes relative distance between robots i and j and
may lead to collisions.

Consider the scenario where two robots are moving towards
each other (∆v̄ < 0), and they collaboratively decelerate
in the relative directions with maximum relative commanded
acceleration:

∆amax = 2umax ∈ R.

To formulate the safety constraint, we need to know he
minimum braking time Tb for them to reduce ∆v̄ to 0. First,
we can write the dynamics for ∆v̄ as

∆ ˙̄v =
−1

τplayer
(∆v̄ −∆amax),

and the evolution of ∆v̄ follows

∆v̄(t) = ∆amax + (∆v̄(0)−∆amax) exp(
−t
τplayer

).

Given the relative velocity ∆v̄(0) < 0 (robots moving towards
each other) at the current time instance t = 0, it takes Tb to
reach ∆v̄(Tb) = 0, where

Tb = −τplayer ln

(
∆amax

∆amax −∆v̄(0)

)
≥ 0.

Therefore, the safety constraint for two robots to remain at
least Ds > 0 distance apart can be formulated as

‖∆pij‖+

∫ Tb

0

∆v̄(t) dt ≥ Ds, ∀i 6= j,

=⇒ ‖∆pij‖+ Tb∆amax + τplayer∆v̄(0) ≥ Ds, ∀i 6= j.
(26)

Plugging (VII-A) into (26), we can formulate hij whose 0-
level set encodes the safe states for robots i and j as

hij(∆pij ,∆vij) = (∆amax −∆v̄(0))

· exp

(
‖∆pij‖+ τplayer∆v̄(0)−Ds

τplayer∆amax

)
−∆amax.

(27)

Given an extended class K∞ function α : R → R (for
example, α(r) = r), hij is a valid control barrier function
if it satisfies the condition that ḣij ≥ −α(hij), which can be
formulated as linear constraints on the control variable u:

ḣij =
∂hij

∂

[
∆pij
∆vij

] [˙∆pij
˙∆vij

]
≥ −α(hij), (28)

where [
˙∆pij
˙∆vij

]
=

[
∆vij

−1
τplayer

(∆vij − (ui − uj)).

]
The exact expression of (28) is omitted here for visual clarity,
but it differs considerably from the one in [11] due to the
damped dynamics in our system.

B. Collision Avoidance using Quadratic Programs

To guarantee collision avoidance among robots, we can
formulate a quadratic program that minimally changes the
nominal control ûi (e.g., produced from trajectory planners

Strategy BL DMPC CMPC
BL 1.6 - 2.2 0.2 - 3.2 1.8 - 1.6

DMPC - 1.4 - 1.6 4.3 - 0.2
CMPC - - 1.0 - 0.8

TABLE II: Average Scores in Tournament 1 - Collisions
allowed

Team BL DMPC CMPC
BL 1.8 - 2.4 0.4 - 5.2 0.8 - 1.0

DMPC - 1.4 - 1.7 1.9 - 0.3
CMPC 1.1 - 1.9

TABLE III: Average Scores in Tournament 2 - No collision
enforced via CBF

described in Sec.VI) such that the actual control command ui
respects the CBF constraint (28) and the input constraint.

u∗ = argminu

N∑
i=1

‖ui − ûi‖2

s.t. CBF constraints in (28), ∀i 6= j,

‖ui‖∞ ≤ umax, ∀i ∈M

(29)

where ‖·‖∞ denotes the infinity norm. To emphasize, the CBF
constraints should only be added if the two robots i and j are
moving towards each other, i.e., ∆v̄ < 0. Due to the convexity
of the problem, safe controls can be solved at every time step
in a centralized fashion very efficiently.

VIII. RESULTS

In this Section, we present some of the maneuvers per-
formed by the described approach, as well as a comparison
of the different strategies by creating a virtual tournament and
using Monte-Carlo simulations to evaluate the outcome.

A. Bounce kicking

For a depiction of the successful execution of the bounce
kick using trajectory optimization with contact dynamics, the
interested reader is directed to our code repository, which
contains a directory with select video results including the
bounce kick.

B. Virtual Tournaments via Monte Carlo simulations

The strategies taken into account for our tournaments are
the Baseline strategy (Part VI-A), the DMPC strategy (Part
VI-B) and the Centralized-MPC strategy (Part VI-C). Each
strategy is hand-tuned to the best of each author’s knowledge,
with slightly different parameters, and they slightly differ for
the kicking velocity (4m/s vs 5m/s in CMPC).

The competition is designed so that every team plays against
every other team for 15 matches (with an exception for the
baseline strategy, which was run for 5 matches), where the
maximum score of each match is 4. Matches differ due
to the presence of actuation noise introduced in simulation.
In order to take into account the “aggressiveness” of each
team and the damage that it may cause to other robots, we
additionally introduce a damage score, which is proportional
to the induced squared velocity change from collision, so that

higher-speed collisions cause more damage. To further take
into account the aggressiveness of each team (e.g. the number
of collision with other agents), we separate our tournament in
two categories. In the first category, we allow the players to
collide with each other, but we monitor their aggressiveness
via the damage score. In the second category of tournament,
we enforce “fairness” by using the CBF-based controller, in
addition to each team’s strategy, to deviate the trajectory of
players about to collide. The CBF-based controller acts as an
additional perturbation to the state of the game, allowing us to
evaluate 1) which strategy is more respectful of the imposed
constraints, and 2) which strategy is more robust to the external
disturbances caused by the “referee” CBF-controller.

The results are shown in Table II for the tournament without
CBF-controller, and in Table III for the tournament with CBF-
based controller. In Appendix B have additionally included the
histograms of the scores and of the damage scores for each
team playing against every other team.

From the results of the Monte-Carlo simulations in Table
II we can observe that the winning strategy appears to be the
Decentralized-MPC method, which consistently outperforms
the other two approaches, scoring an average of 4.0 points
more when playing against the CMP, and 3.0 points more
than the baseline approach. The Centralized-MPC, despite
the high expectations, performs poorly, barely reaching the
baseline approach. This is possibly caused by the tuning of
the approach, as well as the advantage that a more aggressive
strategy may have. This insight is also confirmed by the
fact that, when fairness is enforced via the CBF-controller,
the gap between Centralized-MPC and Decentralized-MPC
decreases.From the damage score in Appendix B, we can
observe that the centralized formulation (with its inter-player
collision avoidance) indeed reduced the damage score for the
agents. With some surprise, we also observe that the CBF has
a small, if any, effect on the ability of teams to score.

IX. CONCLUSION

In this work we have presented a comparison of different
trajectory optimization strategies and formulations for the con-
trol of a hybrid autonomous system, applying these techniques
to the problem of multi-players air hockey. The comparison
has been possible thanks to the in-house built simulator, which
accurately models impact and dynamics, as well as a control-
barrier function controller which allowed us to evaluate the
effects of collisions on the dynamics of the game. Lessons
learn include that contact dynamics in dynamic, adversarial
environments are very challenging, that physical intuition can
be very useful when tuning hybrid optimization strategies, that
MIQP is hard! and that sometimes a simple strategy/controller
can go a long way.

ACKNOWLEDGMENT

We would like to thank the teaching staff for 6.832, both
for teaching the course and also for the periodic guidance
they provided for the direction and methods of this project.
SURVEY KEYWORD: underactuated

REFERENCES

[1] R. D’Andrea, T. Kalmar-Nagy, P. Ganguly, and M. Babish, “The cornell
robocup team,” in Robot Soccer World Cup. Springer, 2000, pp. 41–51.

[2] M. Morari and J. H. Lee, “Model predictive control: past, present and
future,” Computers & Chemical Engineering, vol. 23, no. 4-5, pp. 667–
682, 1999.

[3] E. Camponogara, D. Jia, B. H. Krogh, and S. Talukdar, “Distributed
model predictive control,” IEEE control systems magazine, vol. 22, no. 1,
pp. 44–52, 2002.

[4] C. E. Luis and A. P. Schoellig, “Trajectory generation for multiagent
point-to-point transitions via distributed model predictive control,” IEEE
Robotics and Automation Letters, vol. 4, no. 2, pp. 375–382, 2019.

[5] M. Kamel, J. Alonso-Mora, R. Siegwart, and J. Nieto, “Nonlinear
model predictive control for multi-micro aerial vehicle robust collision
avoidance,” arXiv preprint arXiv:1703.01164, 2017.

[6] A. Bemporad, F. Borrelli, and M. Morari, “Piecewise linear optimal
controllers for hybrid systems,” in Proceedings of the 2000 American
Control Conference. ACC (IEEE Cat. No. 00CH36334), vol. 2. IEEE,
2000, pp. 1190–1194.

[7] D. Pickem, P. Glotfelter, L. Wang, M. Mote, A. D. Ames, E. Feron,
and M. Egerstedt, “The robotarium: A remotely accessible swarm
robotics research testbed,” CoRR, vol. abs/1609.04730, 2016. [Online].
Available: http://arxiv.org/abs/1609.04730

[8] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and
P. Tabuada, “Control barrier functions: Theory and applications,” in 2019
18th European Control Conference (ECC). IEEE, 2019, pp. 3420–3431.

[9] A. Donev, S. Torquato, and F. H. Stillinger, “Neighbor list collision-
driven molecular dynamics simulation for nonspherical particles. i.
algorithmic details ii. applications to ellipses and ellipsoids,” 2004.

[10] T. Marcucci and R. Tedrake, “Mixed-integer formulations for optimal
control of piecewise-affine systems,” in Proceedings of the 22nd ACM
International Conference on Hybrid Systems: Computation and Control,
2019, pp. 230–239.

[11] U. Borrmann, L. Wang, A. D. Ames, and M. Egerstedt, “Control barrier
certificates for safe swarm behavior,” IFAC-PapersOnLine, vol. 48,
no. 27, pp. 68–73, 2015.

APPENDIX A
CONTROL BARRIER FUNCTIONS

The dynamics of the players (1) without noise are in the
control affine form:

ẋ = f(x) + g(x)u, (30)

where x ∈ X ⊆ Rn is the state, u ∈ U ⊆ Rm is the input,
and f and g are Lipschitz continuous. The set C is safe if

x(0) ∈ C =⇒ x(t) ∈ C ∀t ≥ 0. (31)

Before we introduce the definition of control barrier func-
tions, we note that an extended class K∞ function α : R→ R
is strictly increasing, α(0) = 0, α(r) → ∞ as r → ∞, and
α(r)→ −∞ as r → −∞ [8].

Definition 1 (Control barrier function [8]). Consider the
dynamical system in control affine form (30), and let C ∈ D ⊂
Rn be the super zero level set of a continuously differentiable
function h : D → R, i. e. C = {x ∈ D ⊂ Rn | h(x) ≥ 0}. If
there exists a Lipschitz continuous extended class K∞ function
α such that, for the system (30) and for all x ∈ D,

sup
u∈U
{Lfh(x) + Lgh(x)u} ≥ −α(h(x)), (32)

then h is a control barrier function. Lfh(x) and Lgh(x)
denote the Lie derivatives of h in the directions of the vector
fields f and g, respectively.

The following theorem summarizes two important proper-
ties of control barrier functions, which can be used to ensure
both the forward invariance and the asymptotic stability of the
safe set.

Theorem 1 ([8]). Consider a dynamical system in control
affine form (30), and the super zero level set C ⊂ Rn of
a continuously differentiable function h, defined as above.
Then, any Lipschitz continuous controller u such that (32)
holds for all x ∈ D renders the set C forward invariant and
asymptotically stable, or in other words,

x(0) ∈ C ⇒ x(t) ∈ C for all t ≥ 0 (forward invariance),
(33)

x(0) /∈ C ⇒ x(t)→∈ C as t→∞ (asymptotic stability),
(34)

where x(0) denotes the state x at time t = 0, and x(t)→∈ C
signifies that x approaches the set C.

With the forward invariance property, we can use control
barrier functions to ensure that if the system starts in the safe
set (e.g., no collisions), then it will remain in the safe for all
future time. The asymptotic statbility property ensures that, if
the system is driven outside the safe set (e.g., by noise), the
system approaches the safe set eventually.

http://arxiv.org/abs/1609.04730

APPENDIX B
TOURNAMENT RESULTS

A. Tournament 1: No Control Barrier Function

1) Same-type: In this part we compare each strategy play-
ing again adversaries using the same strategy, as shown in
Figures 5 through 10.

0 1 2 3 4

Game Score

0

1

2

3

4

5

6

7

8

9

10

P
re

v
a
le

n
ce

Team A Scores

0 1 2 3 4

Game Score

0

1

2

3

4

5

6

7

8

9

10

P
re

v
a
le

n
ce

Team B Scores

Fig. 5: Score of Baseline Strategy Vs. Baseline Strategy, no
CBF

0 5 10

Damage Score

0

2

4

6

8

10

P
re

v
a
le

n
ce

Damage A1 Imposed on A2

0 2 4 6 8 10 12

Damage Score

0

2

4

6

8

10

P
re

v
a
le

n
ce

Damage A1 Imposed on B1

0 2 4 6 8 10 12

Damage Score

0

2

4

6

8

10

P
re

v
a
le

n
ce

Damage A1 Imposed on B2

Fig. 6: Damage score of Baseline Strategy Vs. Baseline
Strategy, no CBF

0 1 2 3 4 5

Game Score

0

1

2

3

4

5

6

7

8

9

10

P
re

v
a
le

n
ce

Team A Scores

0 1 2 3 4 5

Game Score

0

1

2

3

4

5

6

7

8

9

10

P
re

v
a
le

n
ce

Team B Scores

Fig. 7: Score of Centralized-MPC vs Centralized-MPC, no
CBF

0 1 2 3

Damage Score

0

2

4

6

8

10

P
re

v
a
le

n
ce

Damage A1 Imposed on A2

0 1 2 3

Damage Score

0

2

4

6

8

10

P
re

v
a
le

n
ce

Damage A1 Imposed on B1

0 1 2 3

Damage Score

0

2

4

6

8

10

P
re

v
a
le

n
ce

Damage A1 Imposed on B2

Fig. 8: Damage score of Centralized-MPC vs Centralized-
MPC, no CBF

0 1 2 3 4

Game Score

0

1

2

3

4

5

6

7

8

9

10

P
re

v
a
le

n
ce

Team A Scores

0 1 2 3 4

Game Score

0

1

2

3

4

5

6

7

8

9

10

P
re

v
a
le

n
ce

Team B Scores

Fig. 9: Score of Decentralized-MPC vs Decentralized-MPC,
no CBF

0 5 10

Damage Score

0

2

4

6

8

10

P
re

v
a
le

n
ce

Damage A1 Imposed on A2

0 2 4 6 8 10 12

Damage Score

0

2

4

6

8

10

P
re

v
a
le

n
ce

Damage A1 Imposed on B1

0 2 4 6 8 10 12

Damage Score

0

2

4

6

8

10

P
re

v
a
le

n
ce

Damage A1 Imposed on B2

Fig. 10: Damage score of Decentralized-MPC vs
Decentralized-MPC, no CBF

2) Different-type: In this part we compare each strategy
playing again adversaries using a different strategy, as shown
in Figures 11 through 16.

0 2 4 6 8

Game Score

0

1

2

3

4

5

6

7

8

9

10

P
re

v
a
le

n
ce

Team A Scores

0 2 4 6 8

Game Score

0

1

2

3

4

5

6

7

8

9

10

P
re

v
a
le

n
ce

Team B Scores

Fig. 11: Score of Decentralized-MPC vs Centralized-MPC, no
CBF

0 2 4 6

Damage Score

0

2

4

6

8

10

P
re

v
a
le

n
ce

Damage A1 Imposed on A2

0 2 4 6

Damage Score

0

2

4

6

8

10

P
re

v
a
le

n
ce

Damage A1 Imposed on B1

0 2 4 6

Damage Score

0

2

4

6

8

10

P
re

v
a
le

n
ce

Damage A1 Imposed on B2

Fig. 12: Damage score of Decentralized-MPC vs Centralized-
MPC, no CBF

0 1 2 3 4 5 6

Game Score

0

1

2

3

4

5

6

7

8

9

10
P
re

v
a
le

n
ce

Team A Scores

0 1 2 3 4 5 6

Game Score

0

1

2

3

4

5

6

7

8

9

10

P
re

v
a
le

n
ce

Team B Scores

Fig. 13: Score of Baseline vs Decentralized-MPC, with CBF

0 5 10 15 20 25

Damage Score

0

2

4

6

8

10

P
re

v
a
le

n
ce

Damage A1 Imposed on A2

0 5 10 15 20 25

Damage Score

0

2

4

6

8

10

P
re

v
a
le

n
ce

Damage A1 Imposed on B1

0 5 10 15 20 25

Damage Score

0

2

4

6

8

10

P
re

v
a
le

n
ce

Damage A1 Imposed on B2

Fig. 14: Score of Baseline vs Decentralized-MPC, with CBF

0 1 2 3 4

Game Score

0

1

2

3

4

5

6

7

8

9

10

P
re

v
a
le

n
ce

Team A Scores

0 1 2 3 4

Game Score

0

1

2

3

4

5

6

7

8

9

10

P
re

v
a
le

n
ce

Team B Scores

Fig. 15: Score of Baseline vs Centralized-MPC, with CBF

0 10 20 30

Damage Score

0

2

4

6

8

10

P
re

v
a
le

n
ce

Damage A1 Imposed on A2

0 10 20 30

Damage Score

0

2

4

6

8

10

P
re

v
a
le

n
ce

Damage A1 Imposed on B1

0 10 20 30

Damage Score

0

2

4

6

8

10

P
re

v
a
le

n
ce

Damage A1 Imposed on B2

Fig. 16: Damage score of Baseline vs Centralized-MPC, with
CBF

B. Tournament 2: With Control Barrier Function

1) Same-type: In this part we compare each strategy play-
ing again adversaries using the same strategy with control
barrier functions, as shown in Figures 17 through 22.

0 1 2 3 4 5

Game Score

0

1

2

3

4

5

6

7

8

9

10

P
re

v
a
le

n
ce

Team A Scores

0 1 2 3 4 5

Game Score

0

1

2

3

4

5

6

7

8

9

10

P
re

v
a
le

n
ce

Team B Scores

Fig. 17: Score of Baseline Strategy Vs. Baseline Strategy, with
CBF

0 0.5 1 1.5 2

Damage Score

0

2

4

6

8

10

P
re

v
a
le

n
ce

Damage A1 Imposed on A2

0 0.5 1 1.5 2

Damage Score

0

2

4

6

8

10

P
re

v
a
le

n
ce

Damage A1 Imposed on B1

0 0.5 1 1.5 2

Damage Score

0

2

4

6

8

10

P
re

v
a
le

n
ce

Damage A1 Imposed on B2

Fig. 18: Damage score of Baseline Strategy Vs. Baseline
Strategy,with CBF

0 0.5 1 1.5 2 2.5 3

Game Score

0

1

2

3

4

5

6

7

8

9

10

P
re

v
a
le

n
ce

Team A Scores

0 0.5 1 1.5 2 2.5 3

Game Score

0

1

2

3

4

5

6

7

8

9

10

P
re

v
a
le

n
ce

Team B Scores

Fig. 19: Score of Decentralized-MPC vs Decentralized-MPC,
with CBF

0 0.5 1

Damage Score

0

2

4

6

8

10

P
re

v
a
le

n
ce

Damage A1 Imposed on A2

0 0.5 1

Damage Score

0

2

4

6

8

10

P
re

v
a
le

n
ce

Damage A1 Imposed on B1

0 0.5 1

Damage Score

0

2

4

6

8

10

P
re

v
a
le

n
ce

Damage A1 Imposed on B2

Fig. 20: Score of Decentralized-MPC vs Decentralized-MPC,
with CBF

0 1 2 3 4

Game Score

0

1

2

3

4

5

6

7

8

9

10
P
re

v
a
le

n
ce

Team A Scores

0 1 2 3 4

Game Score

0

1

2

3

4

5

6

7

8

9

10

P
re

v
a
le

n
ce

Team B Scores

Fig. 21: Score of Centralized-MPC vs Centralized-MPC, with
CBF

0 0.5 1

Damage Score

0

2

4

6

8

10

P
re

v
a
le

n
ce

Damage A1 Imposed on A2

0 0.2 0.4 0.6 0.8 1 1.2

Damage Score

0

2

4

6

8

10

P
re

v
a
le

n
ce

Damage A1 Imposed on B1

0 0.2 0.4 0.6 0.8 1 1.2

Damage Score

0

2

4

6

8

10

P
re

v
a
le

n
ce

Damage A1 Imposed on B2

Fig. 22: Damage score of Centralized-MPC vs Centralized-
MPC, with CBF

2) Different-type: In this part we compare each strategy
playing again adversaries using a different strategy with con-
trol barrier functions, as shown in Figures 23 through 28.

0 1 2 3 4 5 6

Game Score

0

1

2

3

4

5

6

7

8

9

10

P
re

v
a
le

n
ce

Team A Scores

0 1 2 3 4 5 6

Game Score

0

1

2

3

4

5

6

7

8

9

10

P
re

v
a
le

n
ce

Team B Scores

Fig. 23: Score of Baseline vs Decentralized-MPC, with CBF

0 1 2 3

Damage Score

0

2

4

6

8

10

P
re

v
a
le

n
ce

Damage A1 Imposed on A2

0 1 2 3

Damage Score

0

2

4

6

8

10

P
re

v
a
le

n
ce

Damage A1 Imposed on B1

0 1 2 3

Damage Score

0

2

4

6

8

10

P
re

v
a
le

n
ce

Damage A1 Imposed on B2

Fig. 24: Score of Baseline vs Decentralized-MPC, with CBF

0 0.5 1 1.5 2

Game Score

0

1

2

3

4

5

6

7

8

9

10

P
re

v
a
le

n
ce

Team A Scores

0 0.5 1 1.5 2

Game Score

0

1

2

3

4

5

6

7

8

9

10

P
re

v
a
le

n
ce

Team B Scores

Fig. 25: Score of Baseline vs Centralized-MPC, with CBF

0 1 2 3

Damage Score

0

2

4

6

8

10

P
re

v
a
le

n
ce

Damage A1 Imposed on A2

0 1 2 3

Damage Score

0

2

4

6

8

10

P
re

v
a
le

n
ce

Damage A1 Imposed on B1

0 1 2 3

Damage Score

0

2

4

6

8

10

P
re

v
a
le

n
ce

Damage A1 Imposed on B2

Fig. 26: Damage score of Baseline vs Centralized-MPC, with
CBF

0 2 4 6 8

Game Score

0

1

2

3

4

5

6

7

8

9

10

P
re

v
a
le

n
ce

Team A Scores

0 2 4 6 8

Game Score

0

1

2

3

4

5

6

7

8

9

10

P
re

v
a
le

n
ce

Team B Scores

Fig. 27: Score of Decentralized-MPC vs Centralized-MPC,
with CBF

0 0.5 1

Damage Score

0

2

4

6

8

10

P
re

v
a
le

n
ce

Damage A1 Imposed on A2

0 0.5 1

Damage Score

0

2

4

6

8

10

P
re

v
a
le

n
ce

Damage A1 Imposed on B1

0 0.5 1

Damage Score

0

2

4

6

8

10

P
re

v
a
le

n
ce

Damage A1 Imposed on B2

Fig. 28: Damage score of Decentralized-MPC vs Centralized-
MPC, with CBF

	Supplementary Material
	Introduction
	Related Work
	Notations
	Simulation Environment
	Trajectory Optimization Methods
	Baseline Program
	Decentralized MPC
	Centralized Non-Linear MPC
	MIQP-like Non-Linear Program for Centralized Planning
	Bounce Kick

	Centralized Collision Avoidance
	Problem Formulation
	Collision Avoidance using Quadratic Programs

	Results
	Bounce kicking
	Virtual Tournaments via Monte Carlo simulations

	Conclusion
	References
	Appendix A: Control Barrier Functions
	Appendix B: Tournament Results
	Tournament 1: No Control Barrier Function
	Same-type
	Different-type

	Tournament 2: With Control Barrier Function
	Same-type
	Different-type

