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Abstract

This project seeks to improve the trade-off be-
tween run-time and accuracy of FANet, a state-
of-the-art algorithm aimed at real-time image seg-
mentation on video streams. The trade-off is
characterized before and after augmenting FANet
to include temporal context aggregation: an ex-
tension of self-attention that considers multiple
consecutive image frames during both training
and inference. To this end, the original FANet
algorithm is re-produced and trained using the
CityScapes dataset (20 classes) for validation of
the base implementation. Subsequently, the tem-
poral context aggregation augmentation to FANet
is presented. The agumented FANet implementa-
tion is then trained and tested on both single-frame
images and video streams from a segmentation
dataset created using AirSim (11 classes). Results
are presented for each scenario, comparing the
segmentation speed (FPS) and performance (in
mean-intersection-over-union, or mIoU %) of the
re-implemented FANet with the results presented
in the original paper, as well as a leader board
for image segmentation on the CityScapes dataset.
The presented results and analysis suggest that
temporal context aggregation is not expressive
enough to consistently provide performance im-
provements.

1. Introduction
1.1. Project Contribution

The contribution of this project is to both implement and
augment a state-of-the-art image semantic segmentation al-
gorithm to attempt to improve its trade-off between speed
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Figure 1: Rendered semantic target labels for a selected
training image from the CityScapes dataset. Used to visually
validate the results presented in Fig. 4.

and accuracy on video streams, as opposed to single-frame
(or disjoint) images. The augmentation entails taking a
learning algorithm that is optimized for fast and accurate
inference on single-frame images and expanding its capa-
bilities to take advantage of a set of temporally consecutive
images, as with video streams from an autonomous vehicle.
This concept can be viewed as an extension of self-attention,
and is referred to as temporal context aggregation (TCA) in
this work. This project provides an analysis of the effects of
including TCA, and prescribes research avenues for further
investigating its usefulness for real-time segmentation on
video streams.

1.2. The Speed-Accuracy Tradeoff in Image Semantic
Segmentation

Image Semantic Segmentation, which allows for object-
level reasoning and analysis from either disjoint images or
video streams, is highly useful in the field of autonomous
vehicles that rely on discrete object awareness for planning
and navigation. Of the many deep learning-based image
segmentation algorithms developed to-date, even the more
modern ones exhibit a fundamental tradeoff between accu-
racy and computational efficiency.

The field of image semantic segmentation, as with many
applications in image processing, was initially dominated
by classical techniques like image thresholding (Sezgin &
Sankur, 2004) and later learning algorithms of low compu-
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tational complexity such as random forest that could train
on a CPU (Schroff et al., 2008). However, the segmentation
accuracy gains from works employing deep neural convo-
lutional networks such as (Simonyan & Zisserman, 2015)
have led to a proliferation of deep learning-based methods
for segmenting images (Hao et al., 2020). Since then, many
of the now myriad of deep convolutional network models
are devised for segmenting single-frame images (Chen et al.,
2018; 2016; Takikawa et al., 2019; Wu et al., 2019; He
et al., 2017; Ronneberger et al., 2015; Minaee et al., 2020).
Moreover, the majority of segmentation methods have no
performance criterion for either temporal consistency across
multiple frames depicting the same scene or real-time pre-
diction speeds (Li et al., 2018)–both of which are desirable
for usage onboard an autonomous vehicle processing video
streams.

Of the methods that address both of the issues stated above,
there is a class that focuses on adding additional compo-
nents such as LSTMs to analyze image sequences (Pfeuffer
et al., 2019) at the expense of higher computational costs.
The remaining class of methods attempts to recycle fea-
tures across frames to reduce computational complexity
in the feature encoder part of the learning algorithm (Zhu
et al., 2017) without addressing overall latency arising from
feature decoding. Recent works such as (Li et al., 2018)
have illustrated the insufficiency of these two classes of al-
gorithms to handle applications where overall latency and
segmentation accuracy are equally important. Thus, at the
frontier of image segmentation techniques for autonomous
vehicles are methods that try to overcome this trade-off
between accuracy and efficiency, while also reducing the
overall latency (Hafiz & Bhat, 2020).

1.3. Related Work: FANet

One of the most recent works attempting to overcome the
accuracy-efficiency trade-off in segmentation is called the
Fast Attention Network (FANet) for real-time semantic seg-
mentation (Hu et al., 2021). FANet reportedly improves
the trade-off by attempting to capture crucial high- and
low-resolution contextual information in successive images
without needing the same network depth generally required
for segmentation. This method differs from a previously
developed method, self-attention, in its calculation of the
“attention module," whose function is to capture this aggre-
gate spatial context in a memory-efficient way. The authors
of FANet modify the activation functions and matrix mul-
tiplication strategies of the attention module to create the
novel “fast attention module," which is able to capture spa-
tial context while also requiring less computation time.

The method boasts a 50% speed increase over the current
state-of-the-art (Siam et al., 2018) while retaining the same
level of accuracy as measured by mean Intersection-over-

Union (mIoU), which is a popular performance metric for se-
mantic segmentation (Jadon, 2020). Performance is demon-
strated on multiple datasets, including a 75.5% mIoU at
58 FPS on the the CityScapes dataset (Cordts et al., 2016),
which provides real-world video streams and segmentation
information for 20 distinct classes in urban street scenes and
is popular for testing autonomous driving-oriented applica-
tions (Minaee et al., 2020).

The authors of FANet claim that the addition of TCA has the
potential to further boost segmentation accuracy by 0.5%
without compromising inference speed.

2. Methods
2.1. FANet Implementation and Augmentation with

Temporal Context Aggregation

FANet is chosen as a representative state-of-the-art image
segmentation algorithm to augment with TCA because of
its favorable accuracy-speed trade-off and utilization of self-
attention, albeit in a slightly modified form.

Figure 2 provides a visual representation of the FANet im-
age segmentation pipeline, as well as the proposed modifi-
cations to include temporal context aggregation within the
fast attention module. As is shown in Fig. 2a, the input
image is encoded into features by a pre-trained instance of
ResNet (He et al., 2015), and those features are extracted at
four different resolutions before being fed into four corre-
sponding fast attention modules (Fig. 2b) and subsequently
combined through up-sampling (Fig. 2c) into the segmented
image output. For this project, ResNet-18 is selected as the
feature encoder due to the FANet authors’ insight that it
provides a desirable balance between encoding capability
and computation speed.

The proposed modification to FANet is illustrated in Fig.
2b–specifically in the stacked matrix multiplication blocks,
which represent the capturing of the fast attention module’s
calculated key (K) and value (V ) matrices for previously
processed frames at times T−1, · · · , T−N in memory. The
stored key and value matrices for the previous N frames
are then summed together and used to help classify the
current image frame at time T through multiplication with
the current frame’s query (Q) matrix.

Thus, just as the fast attention module’s use of K, V , and Q
for each image allows for spatial context aggregation to as-
sist inference at various levels of resolution, the storage and
sliding window sum of past K, V matrices affords temporal
context aggregation. Assuming that the training, validation,
and testing set images are fed into the network in chrono-
logical order (e.g., with a video stream), the inclusion of the
proposed temporal context aggregation scheme is designed
to improve segmentation performance without significant
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b) Fast attention with temporal context aggregation
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Figure 2: Augmented FANet learning algorithm with temporal context aggregation. Figure modified from (Hu et al., 2021)
to show how temporal context aggregation can be introduced into the fast attention module implementation.

increase to the required computation time.

2.2. Video Stream Dataset Generation

Whereas the authors of FANet demonstrate the network’s
performance on disjoint images from CityScapes, an ef-
fective demonstration of TCA’s performance-enhancing ca-
pabilities requires training and testing on high-rate video
streams, where the difference between consecutive images
is small. Moreover, each frame in the video stream should
have corresponding truth labels for both training and testing.
To fulfill these needs, a custom segmented video stream
dataset is generated using the AirSim (Shah et al., 2017)
photorealistic simulation environment.

AirSim allows for camera image dataset generation by ma-
neuvering a simulated autonomous vehicle, such as a car or
a UAV, with an attached camera and logging images from
the camera’s video stream. An API is also provided for log-
ging segmentation labels; however, these labels correspond
to very granular building blocks used to create each AirSim
environment, resulting in a large number of classes (250+)
that aren’t guaranteed to be consistent across different envi-
ronments.

To amend the AirSim segmentation labels issue, the col-
lected image and segmentation data are manually processed
to consolidate all labels into a consistent and concise set of
11 classes: road, vehicle, vegetation, tree, traffic fixture, sky,
fence, stone, house, pool, and roof.

An example image with processed true segmentation labels
is provided by Fig. 3. In total, the generated AirSim dataset
provides 18 separate videos, each a few minutes in length,
with 640× 480 images at 25 Hz.

Figure 3: Sample image and segmentation labels from the
generated AirSim dataset.

2.3. Training and Inference

2.3.1. ON SINGLE-FRAME IMAGES

For the first step in evaluation, the FANet algorithm is imple-
mented without TCA and trained on the CityScapes dataset,
which provides 20 segmented classes in disjoint images,
in order to validate the base implementation by comparing
testing performance to that of the original authors.

In keeping with the reported training process from the au-
thors of FANet, the image training set consists of Nb = 186
batches of NI = 16 images each, for a total training set
size of 2,976 images with corresponding true classification
labels for the NC = 20 CityScapes classes. The network is
trained for 30 epochs.

An additional validation set with Nb = 32, NI = 16 images
is set aside for performance and generalization testing.

For each (normalized) input RGB image of size 3× w × h,
the network outputs a down-sampled output classification
tensor of size NC × w/8× h/8, representing the classifica-
tion probabilities among the NC = 20 CityScapes classes
for each pixel. To evaluate the disparity between the target
and output classifications for each training image, a cross
entropy loss metric is computed across all pixels and classes
between the output image classification tensor Iout and the
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target image classification tensor Itarg. To enable one-to-one
cross entropy comparison, the target image is down-sampled
to one-eighth the original resolution, matching the resolu-
tion of the network output.

The total mIoU accuracy metric %mIoU,tot is calculated for
each epoch as

%mIoU,tot =
1

Nb

Nb∑
i=1

1

NI,iNC

NI,i∑
j=1

NC∑
k=1

%mIoU,j , (1)

%mIoU,j =

∑
p∈Ij
Iout,j � Itarg,j∑

p∈Ij
Iout,j + Itarg,j − (Iout,j � Itarg,j)

, (2)

where
∑

p∈I denotes the sum over all pixels p in image
I. Effectively, %mIoU,tot represents the average mIoU over
all images, classes, and batches in the training iteration.
Equation 1 is consistent with the definition of mIoU most
widely used in computer vision applications, including the
FANet work.

2.3.2. ON VIDEO STREAMS

To evaluate FANet’s performance with the TCA augmenta-
tion, FANet is trained on the video streams from the AirSim
dataset, with and without TCA. The training process on
video streams is largely the same as what is described in
Sec. 2.3.1. That said, the inclusion of TCA necessitates an
important modification of the training process due to how
gradients are calculated for backpropagation.

Without TCA, the segmentation maps of each batch are
calculated simultaneously and independently. With TCA,
the fast attention modules must include the proper K, V
history for T, · · · , T − N (see Fig. 2). To accomplish
this, each batch is first ensured to have temporally sequen-
tial input frames. During the forward propagation of each
fast attention module, the key and value matrices for every
frame in the batch are calculated independently of previous
time frames. Then, all frames after the first N frames are
aggregated with their respective, previous K, V matrices.
Importantly, the gradients for backward propagation are cal-
culated excluding the effects of the loss value from the first
N frames of the batch, since they did not have the proper
K, V history available during computation. In effect, this
preserves the influence of the first N key and value matrices
on future fast attention modules for back propagation. The
advantage of training in this way is that no additional com-
puter memory is required and the additional computation
time is minimal, since all other batch computations can be
done simultaneously.

Furthermore, there are multiple ways to formulate the train-
ing batches when seeking to specialize performance for
video streams. One way is to have each batch consist en-
tirely of consecutive images from the same video sequence

Table 1: Accuracy and speed metrics for select state-of-the-
art semantic segmentation algorithms on the CityScapes
validation image set. For consistent comparison, the vali-
dation set is derived from a publicly available CityScapes
evaluation pipeline. †Computed on a different GPU.

Method mIoU % FPS
FANet (ours) 73.4 50.0
FANet (Hu et al., 2021) 75.0† 72.0†

ENet (Siam et al., 2018) 58.3 62.6
ShuffleSeg (Gamal et al., 2018) 58.3 120.0
Netwarp (Gadde et al., 2017) 80.6 0.33

to ensure that the temporal adjacency assumption between
gradient calculations holds. This simplistic batch formu-
lation will be referred to as homogeneous batching. An
alternative approach is to have each batch consist of smaller
“mini-batches," where each mini-batch consists of consec-
utive frames from the same video. By including different
mini-batches within each training batch, the degree of vari-
ety in the training samples is increased. This batch formula-
tion will be referred to as mixed batching. Mixed batching
requires that care be taken to ensure that gradients are only
retained through TCA within mini-batches, and not across
them, as distinct mini-batches correspond to distinct video
streams. TCA-related results are presented featuring both
batch formulation methods.

3. Results
3.1. CityScapes Dataset

Figures 4-5 give the mIoU training curves the FANet im-
plementation with accompanying image segmentations for
qualitative analysis. From the plots, it is shown that by 30
training epochs, the network achieves a comparable mIoU
to the original authors’ reported validation mIoU of 75.0%.
The training curves and reference images instill confidence
that the baseline implementation of FANet is correct, and
thus suitable as a benchmark comparison for the temporal
context aggregation addendum’s performance.

Table 1 presents the measured speed of our FANet imple-
mentation alongside the final validation set mIoU accuracy.
The table also places these results in a larger context, com-
paring with FANet’s original reported performance numbers
(obtained on a more powerful GPU) as well as various other
(pre-trained) high-performing, state-of-the-art image seg-
mentation algorithms. This larger comparison illustrates
FANet’s positioning as a favorable trade off between accu-
racy and speed in the current image segmentation landscape.
It remains to be shown that FANet’s accuracy can be fur-
ther improved through temporal context aggregation without
taking a considerable hit to inference speed.

https://github.com/MSiam/TFSegmentation
https://github.com/MSiam/TFSegmentation
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Figure 4: mIoU performance of FANet on the formulated training set as a function of training epoch. Visual samples of
FANet’s segmentation label outputs are given at various epochs to demonstrate increasing performance. The corresponding
true segmentation labels are given in Fig. 1.

Figure 5: mIoU performance of FANet on the formulated validation set as a function of training epoch. Examination of the
provided sample outputs at select epochs reveals a similar level of fidelity improvement across time compared to that of the
training set outputs shown in Fig. 4.

3.2. AirSim Dataset

To ensure that neither the structure of the simulated dataset
nor the TCA augmentation has not broken FANet’s func-
tionality and performance, experiments on AirSim dataset
images are presented with a TCA depth of N = 0, effec-
tively replicating the training scenario from Sec. 3.1 but
using video streams and homogeneous/mixed batching. Fig.

7 shows the training curves for homogeneous versus mixed
batching. From the figure, it is immediately apparent that
homogeneous batching leads to unstable training perfor-
mance. This is attributable to the relatively small amount of
variation across consecutive video frames, which conceptu-
ally is similar to drastically reducing the effective batch size.
Mixed batching appears to amend this problem nicely, while
still preserving the temporal adjacency of image frames re-
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Figure 6: Visualization of the segmentation performance across different depths N of TCA. mIoU accuracy shown to
improve stably as the training process progresses.
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Figure 7: mIoU performance comparison of FANet with
TCA depth N = 0 as a function of training epoch with
homogeneous versus mixed batches. Mixed training batches
incorporate images across different video streams while still
isolating the TCA-related gradient terms.

quired for the gradient calculations with TCA. Additionally,
with mixed batching, the mIoU performance exceeds that of
the CityScapes training process by several percentage points
and over less epochs because of the idealized rendering con-
ditions from a simulated–albeit realistic–environment.

The homogeneous versus mixed batching comparison ex-
periment is replicated with a non-zero (N = 4) TCA depth,
and the results are shown in Fig. 8. The same phenomenon
of homogeneous batching instability is observed, but this
time it is more drastic. The sudden mIoU dropoff at ≈ 70
epochs is interesting to consider as a symptom of training
sample impoverishment leading to an over-fitted model. At
N = 4, mixed batching still provides a stable training curve,
though this time requiring more epochs to achieve the same
level of performance.

Figure 9 compares the training curves for increasing TCA
depths. The trend uniformly suggests that larger TCA depths
prolong the training process without offering significant
mIoU performance gains in the limit. Figure 6 gives a
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Figure 8: mIoU performance comparison of FANet with
TCA depth N = 4 as a function of training epoch with
homogeneous versus mixed batches.

Table 2: Generalizability of the mIoU performance for dif-
ferent depths N of TCA. Inference speed found to be con-
sistent across all configurations.

N = 0 N = 2 N = 4 N = 6
Train mIoU (%) 81.5 79.6 80.7 78.7
Val. mIoU (%) 80.2 78.0 77.3 72.2
Test mIoU (%) 80.4 78.2 76.2 72.9
Speed (FPS) 50.0 50.0 50.0 50.0

visual representation of segmentation performance across
TCA depths. Visually, it is difficult to distinguish between
performance levels by the time training is complete for each
formulation. Further context is provided by Table 2, which
suggests that while mIoU performance generalizes well and
requires no significant computational increase across all
TCA depths, mIoU performance steadily drops, rather than
increases, with increasing depth.
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Figure 9: mIoU performance comparison of FANet with
different TCA depths as a function of training epoch with
mixed batches.

4. Conclusions
The training performance comparison between homoge-
neous and mixed batching suggests a potential hypothesis
for why including TCA in FANet has either negligible, or
slightly detrimental, effects. Videos taken from a car or
drone moving through an environment produce images that
evolve at various rates due to the speed and rotation of the
camera, depth to objects, frame rate, etc. With no more than
simple addition of past frames’ key and value matrices, it is
likely difficult for the network to learn weights which will
produce matrices that are robust to all situations.

For a more exhaustive analysis into the potential benefits
of TCA to a segmentation algorithm like FANet, additional
experiments can be performed that attempt to isolate per-
formance benefits or detriments between the training and
inference processes, respectively.

Given the high frame rate at which FANet can operate, inclu-
sion of just one previous frame’s key and value matrices (i.e.,
TCA depth of N = 1), as the original FANet authors report
in their results, may be nearly equivalent to feeding the net-
work two of the same frame. The FANet authors report a
potential 0.5% point increase in mIoU performance by in-
corporating TCA. The statistics of producing this increased
performance are not presented in their work, however. The
results in this study suggest that the reported performance
increase may have been the result of a carefully curated
dataset, or even, possibly, the result of chance.

Working GitHub repository with PyTorch implementation:

https://github.com/goromal/FANet_Evaluation
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